Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 20(7): 4895-4900, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32567866

RESUMEN

Ultrafast oil/water separation based on tunable superwettability switch remains a big challenge. Here, inspired by the ultrafast water transport mechanism in sarracenia, we develop a micro/nanostructured porous membrane with conducting polymer nanotip arrays through the surface-initiated polymerizations. By modulating the height (ranging from 49-529 nm) and redox states of nanotips, a smart reversible superwettability switch is facile to obtain with contact angles of water/oil arranging from 161° to about 0°. Besides, liquid transport speed was accelerated more than 1.5 times by increasing the nanotip length. The water flux could reach up to 50326 L m-2 h-1 (1000 times that of a typical industrial ultrafiltration membrane). This is attributed to the stable and continuous water film along the nanotips, which provide a lubrication layer, leading to an increase of permeability. This work provides significant insights into macro/nanostructured membrane design for smart separation, blood lipid filtration, and smart nanoreactors with high permeability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA