Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 312(1): G85-G102, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881401

RESUMEN

The Winnie mouse, carrying a missense mutation in Muc2, is a model for chronic intestinal inflammation demonstrating symptoms closely resembling inflammatory bowel disease (IBD). Alterations to the immune environment, morphological structure, and innervation of Winnie mouse colon have been identified; however, analyses of intestinal transit and colonic functions have not been conducted. In this study, we investigated in vivo intestinal transit in radiographic studies and in vitro motility of the isolated colon in organ bath experiments. We compared neuromuscular transmission using conventional intracellular recording between distal colon of Winnie and C57BL/6 mice and smooth muscle contractions using force displacement transducers. Chronic inflammation in Winnie mice was confirmed by detection of lipocalin-2 in fecal samples over 4 wk and gross morphological damage to the colon. Colonic transit was faster in Winnie mice. Motility was altered including decreased frequency and increased speed of colonic migrating motor complexes and increased occurrence of short and fragmented contractions. The mechanisms underlying colon dysfunctions in Winnie mice included inhibition of excitatory and fast inhibitory junction potentials, diminished smooth muscle responses to cholinergic and nitrergic stimulation, and increased number of α-smooth muscle actin-immunoreactive cells. We conclude that diminished excitatory responses occur both prejunctionally and postjunctionally and reduced inhibitory purinergic responses are potentially a prejunctional event, while diminished nitrergic inhibitory responses are probably due to a postjunction mechanism in the Winnie mouse colon. Many of these changes are similar to disturbed motor functions in IBD patients indicating that the Winnie mouse is a model highly representative of human IBD. NEW & NOTEWORTHY: This is the first study to provide analyses of intestinal transit and whole colon motility in an animal model of spontaneous chronic colitis. We found that cholinergic and purinergic neuromuscular transmission, as well as the smooth muscle cell responses to cholinergic and nitrergic stimulation, is altered in the chronically inflamed Winnie mouse colon. The changes to intestinal transit and colonic function we identified in the Winnie mouse are similar to those seen in inflammatory bowel disease patients.


Asunto(s)
Colitis/fisiopatología , Colon/fisiopatología , Motilidad Gastrointestinal/fisiología , Tránsito Gastrointestinal/fisiología , Contracción Muscular/fisiología , Transmisión Sináptica/fisiología , Animales , Colitis/genética , Modelos Animales de Enfermedad , Heces/química , Femenino , Inflamación/genética , Inflamación/fisiopatología , Lipocalina 2/análisis , Masculino , Ratones , Mucina 2/genética , Músculo Liso/fisiopatología , Mutación Missense
2.
Cell Biochem Funct ; 31(7): 603-11, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23280987

RESUMEN

Endoplasmic reticulum (ER) stress and oxidative stress have recently been linked to the pathogenesis of inflammatory bowel diseases. Under physiological conditions, intestinal epithelial cells are exposed to ER and oxidative stress affecting the cellular ionic homeostasis. However, these altered ion flux 'signatures' during these stress conditions are poorly characterized. We investigated the kinetics of K(+) , Ca(2+) and H(+) ion fluxes during ER and oxidative stress in a colonic epithelial cell line LS174T using a non-invasive microelectrode ion flux estimation technique. ER and oxidative stress were induced by cell exposure to tunicamycin (TM) and copper ascorbate (CuAsc), respectively, from 1 to 24 h. Dramatic K(+) efflux was observed following acute ER stress with peak K(+) efflux being -30·6 and -138·7 nmolm(-2) s(-1) for 10 and 50 µg ml(-1) , respectively (p < 0·01). TM-dependent Ca(2+) uptake was more prolonged with peak values of 0·85 and 2·68 nmol m(-2) s(-1) for 10 and 50 µg ml(-1) TM, respectively (p < 0·02). Ion homeostasis was also affected by the duration of ER stress. Increased duration of TM treatment from 0 to 18 h led to increases in both K(+) efflux and Ca(2+) uptake. While K(+) changes were significantly higher at each time point tested, Ca(2+) uptake was significantly higher only after prolonged treatment (18 h). CuAsc also led to an increased K(+) efflux and Ca(2+) uptake. Functional assays to investigate the effect of inhibiting K(+) efflux with tetraethylammonium resulted in increased cell viability. We conclude that ER/oxidative stress in colonic epithelial cells cause dramatic K(+) , Ca(2+) and H(+) ion flux changes, which may predispose this lineage to poor stress recovery reminiscent of that seen in inflammatory bowel diseases.


Asunto(s)
Calcio/metabolismo , Colon/metabolismo , Estrés del Retículo Endoplásmico , Células Epiteliales/metabolismo , Estrés Oxidativo , Potasio/metabolismo , Colon/citología , Glicosilación , Homeostasis , Humanos , Células Tumorales Cultivadas
3.
Inflamm Bowel Dis ; 22(11): 2694-2703, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27753693

RESUMEN

Cancer development is often associated with chronic inflammation. To date, research into inflammation-induced cancer has largely focused on chemokines, cytokines, and their downstream targets. These inflammatory mediators may promote tumor growth, invasion, metastasis, and facilitate angiogenesis. However, the exact mechanisms by which inflammation promotes neoplasia remain unclear. Inflammatory bowel disease (IBD) is characterized by recurrent, idiopathic intestinal inflammation, the complications of which are potentially fatal. IBD incidence in Australia is 24.2 per 100,000 and its peak onset is in people aged 15 to 24 years. Symptoms include abdominal pain, cramps, bloody stool, and persistent diarrhoea or constipation and so seriously compromise quality of life. However, due to its unknown etiology, current treatment strategies combat the symptoms rather than the disease and are limited by inefficacy, toxicity, and adverse side-effects. IBD is also associated with an increased risk of colorectal cancer, for which treatment options are similarly limited. In recent years, there has been much interest in the therapeutic potential of mesenchymal stem cells (MSCs). However, whether MSCs suppress or promote tumor development is still contentious within the literature. Many studies indicate that MSCs exert anti-tumor effects and suppress tumor growth, whereas other studies report pro-tumor effects. Studies using MSCs as treatment for IBD have shown promising results in both animal models and human trials. However, as MSC treatment is still novel, the long-term risks remain unknown. This review aims to summarize the current literature on MSC treatment of inflammation-induced cancer, with a focus on colorectal cancer resulting from IBD.


Asunto(s)
Neoplasias Colorrectales/terapia , Enfermedades Inflamatorias del Intestino/complicaciones , Trasplante de Células Madre Mesenquimatosas/métodos , Adolescente , Australia , Neoplasias Colorrectales/etiología , Femenino , Humanos , Masculino , Resultado del Tratamiento , Adulto Joven
4.
World J Gastroenterol ; 22(37): 8334-8348, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27729740

RESUMEN

AIM: To determine if exacerbation of pre-existing chronic colitis in Winnie (Muc2 mutant) mice induces colonic dysplasia. METHODS: Winnie mice and C57BL6 as a genotype control, were administered 1% w/v dextran sulphate sodium (DSS) orally, followed by drinking water alone in week-long cycles for a total of three cycles. After the third cycle, mice were killed and colonic tissue collected for histological and immunohistochemical evaluation. Inflammation and severity of dysplasia in the colonic mucosa were assessed in H&E sections of the colon. Epithelial cell proliferation was assessed using Ki67 and aberrant ß-catenin signalling assessed with enzyme-based immunohistochemistry. Extracted RNA from colonic segments was used for the analysis of gene expression using real-time quantitative PCR. Finally, the distribution of Cxcl5 was visualised using immunohistochemistry. RESULTS: Compared to controls, Winnie mice exposed to three cycles of DSS displayed inflammation mostly confined to the distal-mid colon with extensive mucosal hyperplasia and regenerative atypia resembling epithelial dysplasia. Dysplasia-like changes were observed in 100% of Winnie mice exposed to DSS, with 55% of these animals displaying changes similar to high-grade dysplasia, whereas high-grade changes were absent in wild-type mice. Occasional penetration of the muscularis mucosae by atypical crypts was observed in 27% of Winnie mice after DSS. Atypical crypts however displayed no evidence of oncogenic nuclear ß-catenin accumulation, regardless of histological severity. Expression of Cav1, Trp53 was differentially regulated in the distal colon of Winnie relative to wild-type mice. Expression of Myc and Ccl5 was increased by DSS treatment in Winnie only. Furthermore, increased Ccl5 expression correlated with increased complexity in abnormal crypts. While no overall difference in Cxcl5 mucosal expression was observed between treatment groups, epithelial Cxcl5 protein appeared to be diminished in the atypical epithelium. CONCLUSION: Alterations to the expression of Cav1, Ccl5, Myc and Trp53 in the chronically inflamed Winnie colon may influence the transition to dysplasia.


Asunto(s)
Colitis/patología , Colon/patología , Neoplasias del Colon/patología , Mucosa Intestinal/patología , Animales , Peso Corporal , Quimiocina CXCL5/metabolismo , Colitis Ulcerosa/metabolismo , Sulfato de Dextran , Femenino , Regulación de la Expresión Génica , Genotipo , Inflamación/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , ARN/metabolismo , Transducción de Señal , beta Catenina/metabolismo
5.
PLoS One ; 10(7): e0134259, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26218284

RESUMEN

Inflammatory bowel diseases, such as ulcerative colitis, cause significant morbidity and decreased quality of life. The currently available treatments are not effective in all patients, can be expensive and have potential to cause severe side effects. This prompts the need for new treatment modalities. Enoxaparin, a widely used antithrombotic agent, is reported to possess anti-inflammatory properties and therefore we evaluated its therapeutic potential in a mouse model of colitis. Acute colitis was induced in male C57BL/6 mice by administration of dextran sulfate sodium (DSS). Mice were treated once daily with enoxaparin via oral or intraperitoneal administration and monitored for colitis activities. On termination (day 8), colons were collected for macroscopic evaluation and cytokine measurement, and processed for histology and immunohistochemistry. Oral but not intraperitoneal administration of enoxaparin significantly ameliorated DSS-induced colitis. Oral enoxaparin-treated mice retained their body weight and displayed less diarrhea and fecal blood loss compared to the untreated colitis group. Colon weight in enoxaparin-treated mice was significantly lower, indicating reduced inflammation and edema. Histological examination of untreated colitis mice showed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and the presence of edema, while all aspects of this pathology were alleviated by oral enoxaparin. Reduced number of macrophages in the colon of oral enoxaparin-treated mice was accompanied by decreased levels of pro-inflammatory cytokines. Oral enoxaparin significantly reduces the inflammatory pathology associated with DSS-induced colitis in mice and could therefore represent a novel therapeutic option for the management of ulcerative colitis.


Asunto(s)
Anticoagulantes/administración & dosificación , Colitis/prevención & control , Enoxaparina/administración & dosificación , Inflamación/prevención & control , Macrófagos/efectos de los fármacos , Enfermedad Aguda , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Anticoagulantes/farmacología , Colitis/inducido químicamente , Colitis/inmunología , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Enoxaparina/farmacología , Técnicas para Inmunoenzimas , Inflamación/inducido químicamente , Inflamación/inmunología , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Pérdida de Peso/efectos de los fármacos
6.
Gut Pathog ; 6: 25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25002910

RESUMEN

BACKGROUND: Inflammatory bowel disease (comprising ulcerative colitis and Crohn's disease) is a multifactorial disease that is extensively associated with stool microbiome changes (dysbiosis). Appendicitis and appendectomy limits subsequent colitis, clinically, and in animal models. We wanted to examine how the appendiceal and stool microbiome fared in our spontaneous colitic Winnie (Muc2(-/-)) mice model. METHODS: Two C57BL/6 and 10 Winnie mice at ages 12 and 15 weeks were euthanized for stool and caecal patch samples. DNA was extracted using the QIAamp DNA Stool Mini Kit then the V1-V3 hypervariable region of the 16S rRNA gene was sequenced using the Roche/454 GS FLX + pyrosequencing instrument. A Galaxy metagenomic pipeline was used to define phyla and families at sequence similarity threshold of ≥ 80%. RESULTS: Bacteriodetes was decreased in 15-week Winnie mice appendices compared to corresponding stool samples (P < 0.01). Proteobacteria was increased in appendices of Winnie mice compared to corresponding stool samples (P < 0.05). The Bacteroidetes family Rikenellaceae could be identified only in 15-week-old Winnie mice appendices. A higher quantity of Acetobacteraceae (Proteobacteria phylum) was present in 15-week Winnie mice when compared to 12-week Winnie mice (P < 0.01). Helicobacteraceae (Proteobacteria phylum), which is prominent in all Winnie mice, is absent in control mice. CONCLUSIONS: The appendiceal dysbiosis observed in our Winnie mice is commensurate with, and adds to extant literature data. The presence of Helicobacteraceae (Proteobacteria) only in colitic Winnie mice (but not control mice) is consistent with reports of increased Helicobacter in IBD patients. Bacteroides (Bacteroidetes) decreases may be a reflection of reduced anti-inflammatory commensal species such as B. fragilis. Further research is warranted to expand and delineate the relationship between IBD and the appendix microbiome.

7.
Front Immunol ; 4: 301, 2013 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-24137160

RESUMEN

One of the most significant challenges of cell biology is to understand how each type of cell copes with its specific workload without suffering damage. Among the most intriguing questions concerns intestinal epithelial cells in mammals; these cells act as a barrier between the internally protected region and the external environment that is exposed constantly to food and microbes. A major process involved in the processing of microbes is autophagy. In the intestine, through multiple, complex signaling pathways, autophagy including macroautophagy and xenophagy is pivotal in mounting appropriate intestinal immune responses and anti-microbial protection. Dysfunctional autophagy mechanism leads to chronic intestinal inflammation, such as inflammatory bowel disease (IBD). Studies involving a number of in vitro and in vivo mouse models in addition to human clinical studies have revealed a detailed role for autophagy in the generation of chronic intestinal inflammation. A number of genome-wide association studies identified roles for numerous autophagy genes in IBD, especially in Crohn's disease. In this review, we will explore in detail the latest research linking autophagy to intestinal homeostasis and how alterations in autophagy pathways lead to intestinal inflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA