Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 31(30): 10836-46, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21795536

RESUMEN

We have identified a novel low-density lipoprotein (LDL) receptor family member, termed LDL receptor class A domain containing 3 (LRAD3), which is expressed in neurons. The LRAD3 gene encodes an ∼50 kDa type I transmembrane receptor with an ectodomain containing three LDLa repeats, a transmembrane domain, and a cytoplasmic domain containing a conserved dileucine internalization motif and two polyproline motifs with potential to interact with WW-domain-containing proteins. Immunohistochemical analysis of mouse brain reveals LRAD3 expression in the cortex and hippocampus. In the mouse hippocampal-derived cell line HT22, LRAD3 partially colocalizes with amyloid precursor protein (APP) and interacts with APP as revealed by coimmunoprecipitation experiments. To identify the portion of APP that interacts with LRAD3, we used solid-phase binding assays that demonstrated that LRAD3 failed to bind to a soluble APP fragment (sAPPα) released after α-secretase cleavage. In contrast, C99, the ß-secretase product that remains cell associated, coprecipitated with LRAD3, confirming that regions within this portion of APP are important for associating with LRAD3. The association of LRAD3 with APP increases the amyloidogenic pathway of APP processing, resulting in a decrease in sAPPα production and increased Aß peptide production. Pulse-chase experiments confirm that LRAD3 expression significantly decreases the cellular half-life of mature APP. These results reveal that LRAD3 influences APP processing and raises the possibility that LRAD3 alters APP function in neurons, including its downstream signaling.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Receptores de LDL/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Células Cultivadas , Corteza Cerebral/citología , Chlorocebus aethiops , Cricetinae , Embrión de Mamíferos , Endocitosis/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Inmunoprecipitación/métodos , Ratones , Peso Molecular , Neuronas/metabolismo , Unión Proteica/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , ARN Mensajero/metabolismo , Receptores de LDL/genética , Análisis de Secuencia de Proteína , Transfección/métodos
2.
J Biol Chem ; 286(35): 30535-30541, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21676865

RESUMEN

The LDL receptor-related protein 1 (LRP1) is a large endocytic receptor that controls macrophage migration in part by interacting with ß(2) integrin receptors. However, the molecular mechanism underlying LRP1 integrin recognition is poorly understood. Here, we report that LRP1 specifically recognizes α(M)ß(2) but not its homologous receptor α(L)ß(2). The interaction between these two cellular receptors in macrophages is significantly enhanced upon α(M)ß(2) activation by LPS and is mediated by multiple regions in both LRP1 and α(M)ß(2). Specifically, we find that both the heavy and light chains of LRP1 are involved in α(M)ß(2) binding. Within the heavy chain, the binding is mediated primarily via the second and fourth ligand binding repeats. For α(M)ß(2), we find that the α(M)-I domain represents a major LRP1 recognition site. Indeed, substitution of the I domain of the α(L)ß(2) receptor with that of α(M) confers the α(L)ß(2) receptor with the ability to interact with LRP1. Furthermore, we show that residues (160)EQLKKSKTL(170) within the α(M)-I domain represent a major LRP1 recognition site. Given that perturbation of this specific sequence leads to altered adhesive activity of α(M)ß(2), our finding suggests that binding of LRP1 to α(M)ß(2) could alter integrin function. Indeed, we further demonstrate that the soluble form of LRP1 (sLRP1) inhibits α(M)ß(2)-mediated adhesion of cells to fibrinogen. These studies suggest that sLRP1 may attenuate inflammation by modulating integrin function.


Asunto(s)
Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/química , Antígeno de Macrófago-1/química , Animales , Sitios de Unión , Adhesión Celular , Línea Celular , Fibrinógeno/química , Humanos , Cinética , Ligandos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Macrófagos/metabolismo , Ratones , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Solubilidad , Transfección
3.
J Biol Chem ; 282(10): 7504-11, 2007 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-17227771

RESUMEN

The low density lipoprotein receptor related protein 1B (LRP1B) is a large endocytic receptor that was first identified as a candidate tumor suppressor gene. In the current investigation we demonstrate that LRP1B undergoes regulated intramembrane proteolysis in a gamma-secretase-dependent process. The released intracellular domain (ICD) then translocates to the nucleus via a nuclear localization signal that is present within this domain. ICD release first requires shedding of the LRP1B ectodomain, which appears to be catalyzed by a member of the metalloproteinase family. Employing site-directed mutagenesis studies, we identified lysine residues 4432 and 4435 and arginine 4442 as key amino acids important for ectodomain shedding of LRP1B. We also demonstrate that an LRP1B minireceptor as well as the ICD domain alone suppresses anchorage-independent growth of LRP1B-deficient neuroglioma cells (H4 cells). Interestingly, abrogating ectodomain shedding resulted in a loss of the ability of LRP1B minireceptors to suppress anchorage-independent growth. Together, these studies reveal that LRP1B has tumor suppression function that is mediated by proteolytic processing of the receptor resulting in ICD release.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/fisiología , Glioma/prevención & control , Receptores de LDL/fisiología , Proteínas Supresoras de Tumor/fisiología , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Células Cultivadas , Glioma/patología , Humanos , Datos de Secuencia Molecular , Complejo de la Endopetidasa Proteasomal/fisiología , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptores de LDL/química
4.
J Biol Chem ; 280(30): 27872-8, 2005 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-15944146

RESUMEN

Activation of the platelet-derived growth factor receptor-beta (PDGFR-beta) leads to tyrosine phosphorylation of the cytoplasmic domain of LRP and alters its association with adaptor and signaling proteins, such as Shc. The mechanism of the PDGF-induced LRP tyrosine phosphorylation is not well understood, especially since PDGF not only activates PDGF receptor but also binds directly to LRP. To gain insight into this mechanism, we used a chimeric receptor in which the ligand binding domain of the PDGFR-beta was replaced with that from the macrophage colony-stimulating factor (M-CSF) receptor, a highly related receptor tyrosine kinase of the same subfamily, but with different ligand specificity. Activation of the chimeric receptor upon the addition of M-CSF readily mediated the tyrosine phosphorylation of LRP. Since M-CSF is not recognized by LRP, these results indicated that growth factor binding to LRP is not necessary for this phosphorylation event. Using a panel of cytoplasmic domain mutants of the chimeric M-CSF/PDGFR-beta, we confirmed that the kinase domain of PDGFR-beta is absolutely required for LRP tyrosine phosphorylation but that PDGFR-beta-mediated activation of phosphatidylinositol 3-kinase, RasGAP, SHP-2, phospholipase C-gamma, and Src are not necessary for LRP tyrosine phosphorylation. To identify the cellular compartment where LRP and the PDGFR-beta may interact, we employed immunofluorescence and immunogold electron microscopy. In WI-38 fibroblasts, these two receptors co-localized in coated pits and endosomal compartments following PDGF stimulation. Further, phosphorylated forms of the PDGFR-beta co-immunoprecipitated with LRP following PDGF treatment. Together, these studies revealed close association between activated PDGFR-beta and LRP, suggesting that LRP functions as a co-receptor capable of modulating the signal transduction pathways initiated by the PDGF receptor from endosomes.


Asunto(s)
Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Citoplasma/metabolismo , Endosomas/metabolismo , Fibroblastos/metabolismo , Humanos , Inmunohistoquímica , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Ratones , Microscopía Fluorescente , Mutación , Células 3T3 NIH , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolipasa C gamma , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteínas Tirosina Fosfatasas/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Factores de Tiempo , Fosfolipasas de Tipo C/metabolismo , Tirosina/química , Tirosina/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
5.
J Biol Chem ; 280(18): 17777-85, 2005 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-15749709

RESUMEN

BACE is a transmembrane protease with beta-secretase activity that cleaves the amyloid precursor protein (APP). After BACE cleavage, APP becomes a substrate for gamma-secretase, leading to release of amyloid-beta peptide (Abeta), which accumulates in senile plaques in Alzheimer disease. APP and BACE are co-internalized from the cell surface to early endosomes. APP is also known to interact at the cell surface and be internalized by the low density lipoprotein receptor-related protein (LRP), a multifunctional endocytic and signaling receptor. Using a new fluorescence resonance energy transfer (FRET)-based assay of protein proximity, fluorescence lifetime imaging (FLIM), and co-immunoprecipitation we demonstrate that the light chain of LRP interacts with BACE on the cell surface in association with lipid rafts. Surprisingly, the BACE-LRP interaction leads to an increase in LRP C-terminal fragment, release of secreted LRP in the media and subsequent release of the LRP intracellular domain from the membrane. Taken together, these data suggest that there is a close interaction between BACE and LRP on the cell surface, and that LRP is a novel BACE substrate.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Animales , Ácido Aspártico Endopeptidasas/genética , Células CHO , Línea Celular Tumoral , Cricetinae , Endopeptidasas , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Ratones , Especificidad por Sustrato/fisiología
6.
J Cell Biochem ; 91(4): 766-76, 2004 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-14991768

RESUMEN

The amino-terminal domain of the extracellular matrix (ECM) protein thrombospondin-1 (TSP-1) mediates binding to cell surface heparan sulfate proteoglycans (HSPG) as well as binding to the endocytic receptor, low density lipoprotein-related protein (LRP-1). We previously found that recombinant TSP-1 containing the amino-terminal residues 1-214, retained both of these interactions (Mikhailenko et al. [1997]: J Biol Chem 272:6784-6791). Here, we examined the activity of a recombinant protein containing amino-terminal residues 1-90 of TSP-1 and found that this domain did not retain high-affinity heparin-binding. The loss of heparin-binding correlated with decreased binding to the fibroblast cell surface. However, both ligand blotting and solid phase binding studies indicate that this truncated fragment of TSP-1 retained high-affinity binding to LRP-1. Consistent with this, it also retained the ability to block the uptake and degradation of (125)I-TSP-1. However, TSP-1(1-90) itself was poorly endocytosed and this truncated amino-terminal domain was considerably more effective than the full-length heparin-binding domain (HBD) of TSP-1 in blocking the catabolism of endogenously expressed TSP-1. These results indicate that TSP-1 binding to LRP-1 does not require prior or concomitant interaction with cell surface HSPG but suggest subsequent endocytosis requires high-affinity heparin-binding.


Asunto(s)
Endocitosis , Proteoglicanos de Heparán Sulfato/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Trombospondina 1/química , Trombospondina 1/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/metabolismo , Endocitosis/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteoglicanos de Heparán Sulfato/química , Proteoglicanos de Heparán Sulfato/genética , Heparina/metabolismo , Humanos , Ratones , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes/genética , Trombospondina 1/farmacología
7.
J Biol Chem ; 279(39): 40536-44, 2004 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-15272003

RESUMEN

The low density lipoprotein receptor-related protein (LRP) is a large receptor that participates in endocytosis, signaling pathways, and phagocytosis of necrotic cells. Mechanisms that direct LRP to function in these distinct pathways likely involve its association with distinct cytoplasmic adaptor proteins. We tested the hypothesis that the association of various adaptor proteins with the LRP cytoplasmic domain is modulated by its phosphorylation state. Phosphoamino acid analysis of metabolically labeled LRP revealed that this receptor is phosphorylated at serine, threonine, and tyrosine residues within its cytoplasmic domain, whereas inhibitor studies identified protein kinase Calpha (PKCalpha) as a kinase capable of phosphorylating LRP. Mutational analysis identified critical threonine and serine residues within the LRP cytoplasmic domain that are necessary for phosphorylation mediated by PKCalpha. Mutating these threonine and serine residues to alanines generated a receptor that was not phosphorylated and that was internalized more rapidly than wild-type LRP, revealing that phosphorylation reduces the association of LRP with adaptor molecules of the endocytic machinery. In contrast, serine and threonine phosphorylation was necessary for the interaction of LRP with Shc, an adaptor protein that participates in signaling events. Furthermore, serine and threonine phosphorylation increased the interaction of LRP with other adaptor proteins such as Dab-1 and CED-6/GULP. These results indicate that phosphorylation of LRP by PKCalpha modulates the endocytic and signaling function of LRP by modifying its association with adaptor proteins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/química , Proteína Quinasa C/metabolismo , Serina/química , Treonina/química , Alanina/química , Animales , Células CHO , Células COS , Línea Celular , Cricetinae , Citoplasma/metabolismo , Análisis Mutacional de ADN , Relación Dosis-Respuesta a Droga , Endocitosis , Ensayo de Inmunoadsorción Enzimática , Fibroblastos/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Immunoblotting , Ligandos , Mutación , Ácidos Fosfoaminos/química , Fosforilación , Pruebas de Precipitina , Unión Proteica , Proteína Quinasa C-alfa , Estructura Terciaria de Proteína , Proteínas/metabolismo , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Transducción de Señal , Factores de Tiempo , Transfección
8.
J Biol Chem ; 277(18): 15499-506, 2002 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-11854294

RESUMEN

The low density lipoprotein receptor-related protein (LRP) functions in the catabolism of numerous ligands including proteinases, proteinase inhibitor complexes, and lipoproteins. In the current study we provide evidence indicating an expanded role for LRP in modulating cellular signaling events. Our results show that platelet-derived growth factor (PDGF) BB induces a transient tyrosine phosphorylation of the LRP cytoplasmic domain in a process dependent on PDGF receptor activation and c-Src family kinase activity. Other growth factors, including basic fibroblast growth factor, epidermal growth factor, insulin-like growth factor-1, were unable to mediate tyrosine phosphorylation of LRP. The basis for this selectivity may result from the ability of LRP to bind PDGFBB, because surface plasmon resonance experiments demonstrated that only PDGF, and not basic fibroblast growth factor, epidermal growth factor, or insulin-like growth factor-1, bound to purified LRP immobilized on a sensor chip. The use of LRP mini-receptor mutants as well as in vitro phosphorylation studies demonstrated that the tyrosine located within the second NPXY motif found in the LRP cytoplasmic domain is the primary site of tyrosine phosphorylation by Src and Src family kinases. Co-immunoprecipitation experiments revealed that PDGF-mediated tyrosine phosphorylation of LRPs cytoplasmic domain results in increased association of the adaptor protein Shc with LRP and that Shc recognizes the second NPXY motif within LRPs cytoplasmic domain. In the accompanying paper, Boucher et al. (Boucher, P., Liu, P. V., Gotthardt, M., Hiesberger, T., Anderson, R. G. W., and Herz, J. (2002) J. Biol. Chem. 275, 15507-15513) reveal that LRP is found in caveolae along with the PDGF receptor. Together, these studies suggest that LRP functions as a co-receptor that modulates signal transduction pathways initiated by the PDGF receptor.


Asunto(s)
Proteínas Relacionadas con Receptor de LDL/metabolismo , Fosfotirosina/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Receptores del Factor de Crecimiento Derivado de Plaquetas/fisiología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/farmacología , Becaplermina , Unión Competitiva , Células COS , Proteína Tirosina Quinasa CSK , Chlorocebus aethiops , Factor de Crecimiento Epidérmico/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Humanos , Factor I del Crecimiento Similar a la Insulina/farmacología , Cinética , Proteínas Relacionadas con Receptor de LDL/química , Proteínas Relacionadas con Receptor de LDL/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Factor de Crecimiento Derivado de Plaquetas/farmacocinética , Subunidades de Proteína , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-sis , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie , Transfección , Familia-src Quinasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA