Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Chem Biodivers ; : e202401732, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39376131

RESUMEN

Callistemon viminalis (Sol. ex Gaertn.) G. Don ex Loudon) (Family: Myrtaceae) is used for its medicinal properties in treating various metabolic disorders. We investigated the chemical characterization and biological screening of n-hexane extract of C. viminalis. Total phenolic content was (37.45 ± 7.40 mg GA.E/g D.E ± S.D) and total flavonoid content was (18.43 ± 6.34 mg R.E/g D.E ± S.D). The GC-MS screening of n-hexane extract tentatively identified 70 bioactive phytochemicals. The maximum antioxidant potential (289.99 ± 9.01 mg T.E/g D.E±S.D) was observed by FRAP assay. The enzyme inhibition assays revealed α-glucosidase and α-amylase inhibition (6.9 ± 0.13 and 7.2 ± 0.56 mmol of ACA.E/g D.E±S.D), urease (4.95 ± 0.9 mg of TU.E/g D.E±S.D), acetylcholinesterase (2.9 ± 0.08 mg GALA.E/g D.E±S.D), lipoxygenase (4.93 ± 1.05 mg of Indo.E/g D.E±S.D) and tyrosinase (4.33 ± 0.62 mg of KA.E/g D.E±S.D) inhibition. The extract showed antibacterial potential against Salmonella typhi (53.90±5.05) Bacillus subtilis (68.55±2.70%), Salmonella aureus (71.30±4.44%) and Pseudomonas aeruginosa (57.86±6.02%). The docking studies revealed a good docking interaction of ligands against the studied enzymes while ADME analysis revelaed pharmacokinetic profile of the phytoconstituents. C. viminalis possesses promising therapeutic potential and can be further explored for drug development and drug designing.

2.
Saudi Pharm J ; 32(2): 101939, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38261891

RESUMEN

Many Ruellia species have been utilized in traditional medicine and despite the prevalent use of Ruellia tweediana in folk medicine, its antioxidant potential and polyphenol content have not been investigated. Therefore, the present study aimed to explore the medicinal value of R. tweediana by evaluating its total phenolic (TPC) and flavonoid contents (TFC), GC-MS analysis, antioxidant, antibacterial, and enzyme inhibition activities. The TPC and TFC of the extract/fractions were assessed using the Folin-Ciocalteu and aluminum trichloride methods, respectively. To determine the antioxidant capacity, five different assays were used: DPPH, ABTS, CUPRAC, FRAP, and metal chelating assays. The inhibition activity against α-glucosidase, α-amylase, cholinesterases, and lipoxygenase enzymes was also analyzed. Furthermore, GC-MS was performed for chemical screening of non-polar fraction. The methanol extract showed the maximum TPC (167.34 ± 2.23 mg GAE/g) and TFC (120.43 ± 1.71 mg RE/g) values among all the tested samples. GC-MS screening of the n-hexane fraction showed the presence of 40 different phytoconstituents. The results demonstrated the highest scavenging potential of the methanol extract against DPPH (167.79 ± 2.75 mg TE/g) and ABTS (255.32 ± 2.91 mg TE/g) radicals, as well as the metal-reducing capacity measured by CUPRAC (321.34 ± 3.09 mg TE/g), FRAP (311.32 ± 2.91 mg TE/g), and metal chelating assay (246.78 ± 10.34 mg EDTAE/g). Notably, the n-hexane fraction revealed the highest α-glucosidase and α-amylase inhibition activity (186.8 ± 2.84 and 179.7 ± 4.32 mg ACAE/g, respectively) while methanol extract showed highest acetylcholinesterase and butyrylcholinesterase inhibition activity (198.6 ± 3.31 and 184.3 ± 2.92 mg GALE/g, respectively). The GC-MS identified Lupeol showed best binding affinity with all docked enzymes as compared to standard compounds. The presence of bioactive phytoconstituents showed by GC-MS underscores the medicinal importance of R. tweediana, making it a promising candidate for natural medicine.

3.
Biochem J ; 479(19): 2035-2048, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36111588

RESUMEN

In the present work, we reported the synthesis of Schiff bases from 4-phenoxy-5-sulfamoylbenzoic acid motif. The reaction was carried out by substitution of different aldehyde and ketones at sulfamoyl group of sulfamoylbenzoic acid. The generated substituted products (4a-4i) possessed potent structure activity relationship and exhibited drug like properties. The structures of synthesized compounds were characterized on the basis of FT-IR, 1H NMR, 13C NMR and mass spectroscopic data. The effects of synthesized products were investigated on urease enzyme through anti-urease enzyme inhibition assay (Weather burn method). These compounds were further evaluated for antibacterial potential. The Rationale behind the assessment of antibacterial activity was to investigate the synthesized compound's dual mode action against urease and virulent bacterial strains in order to develop a lead candidate for the treatment of GIT diseases such as gastric and peptic ulcers, as well as hepatic encephalopathy. The synthesized derivatives have outstanding anti-urease and antibacterial action, as is evident from in vitro and in silico studies. As a result, these compounds (3-(butylamino)-4-phenoxy-5-sulfamoylbenzoic acid; 4a-4i) might be explored further as a potential lead for the development of potent inhibitors in the future.


Asunto(s)
Bases de Schiff , Ureasa , Aldehídos , Antibacterianos/farmacología , Bacterias/metabolismo , Benzoatos , Colorantes/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Cetonas/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Bases de Schiff/química , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Ureasa/química , Ureasa/metabolismo
4.
Molecules ; 28(9)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37175255

RESUMEN

The objective of the study is to evaluate the chemical characterisation, and biological and in silico potential of Haloxylon stocksii (Boiss.) Benth, an important halophyte commonly used in traditional medicine. The research focuses on the roots and aerial parts of the plant and extracts them using two solvents: methanol and dichloromethane. Chemical characterisation of the extracts was carried out using total phenolic contents quantification, GC-MS analysis, and LC-MS screening. The results exhibited that the aerial parts of the plant have significantly higher total phenolic content than the roots. The GC-MS and LC-MS analysis of the plant extracts revealed the identification of 18 bioactive compounds in each. The biological evaluation was performed using antioxidant, antibacterial, and in vitro antidiabetic assays. The results exhibited that the aerial parts of the plant have higher antioxidant and in vitro antidiabetic activity than the roots. Additionally, the aerial parts of the plant were most effective against Gram-positive bacteria. Molecular docking was done to evaluate the binding affinity (BA) of the bioactive compounds characterised by GC-MS with diabetic enzymes used in the in vitro assay. The results showed that the BA of γ-sitosterol was better than that of acarbose, which is used as a standard in the in vitro assay. Overall, this study suggests that the extract from aerial parts of H. stocksii using methanol as a solvent have better potential as a new medicinal plant and can provide a new aspect to develop more potent medications. The research findings contribute to the scientific data of the medicinal properties of Haloxylon stocksii and provide a basis for further evaluation of its potential as a natural remedy.


Asunto(s)
Hipoglucemiantes , Metanol , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Metanol/química , Antioxidantes/farmacología , Antioxidantes/química , Plantas Tolerantes a la Sal , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Solventes/química , Fenoles , Antibacterianos/farmacología , Fitoquímicos/farmacología
5.
Molecules ; 27(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36558027

RESUMEN

The current study was designed to investigate the feasibility of incorporating the water-insoluble lipophilic drug Alprazolam (Alp) into solid lipid nanoparticles (SLNs) to offer the combined benefits of the quick onset of action along with the sustained release of the drug. Therefore, compritol-based alprazolam-loaded SLNs (Alp-SLNs) would provide early relief from anxiety and sleep disturbances and long-lasting control of symptoms in patients with depression, thereby enhancing patient compliance. The optimized Alp-SLNs analyzed by DLS and SEM showed consistent particle size of 92.9 nm with PI values and standard deviation of the measurements calculated at <0.3 and negative surface charge. These characteristic values demonstrate the desired level of homogeneity and good physical stability of Alp-SLNs. The SLNs had a good entrapment efficiency (89.4%) and high drug-loading capacity (77.9%). SEM analysis revealed the smooth spherical morphology of the SLNs. The physical condition of alprazolam and absence of interaction among formulation components in Alp-SLNs was confirmed by FTIR and DSC analyses. XRD analysis demonstrated the molecular dispersion of crystalline alprazolam in Alp-SLNs. The in vitro release study implied that the release of Alp from the optimized Alp-SLN formulation was sustained as compared to the Alp drug solution because Alp-SLNs exhibited sustained release of alprazolam over 24 h. Alp-SLNs are a promising candidate to achieve sustained release of the short-acting drug Alp, thereby reducing its dosing frequency and enhancing patient compliance.


Asunto(s)
Alprazolam , Nanopartículas , Humanos , Preparaciones de Acción Retardada , Portadores de Fármacos/química , Lípidos/química , Nanopartículas/química , Tamaño de la Partícula
6.
Molecules ; 27(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35807450

RESUMEN

Roots of Rondeletia odorata are a rich source of phytochemicals with high antioxidant potential and thus may possess health benefits. This study used the LC-MS technique to identify phytoconstituents in R. odorata roots extract/fractions. Results revealed that n-butanol fraction and ethanolic extract contained total phenolic and flavonoid contents with values of 155.64 ± 0.66 mgGAE/g DE and 194.94 ± 0.98 mgQE/g DE, respectively. Significant potential of antioxidants was observed by DPPH, CUPRAC and FRAP methods while the ABTS method showed moderate antioxidant potential. Maximum % inhibition for urease, tyrosinase and carbonic anhydrase was shown by ethanolic extract (73.39 ± 1.11%), n-butanol soluble fraction (80.26 ± 1.59%) and ethyl acetate soluble fraction (76.50 ± 0.67%) which were comparable with thiourea (standard) (98.07 ± 0.74%), kojic acid (standard) (98.59 ± 0.92%) and acetazolamide (standard) (95.51 ± 1.29%), respectively, while all other extract/fractions showed moderate inhibition activity against these three enzymes. Hemolytic activity was also observed to range from 18.80 ± 0.42 to 3.48 ± 0.69% using the standard (triton X-100) method. In total, 28 and 20 compounds were identified tentatively by LC-MS analysis of ethanolic extract and n-butanol soluble fraction, respectively. Furthermore, molecular docking was undertaken for major compounds identified by LC-MS for determining binding affinity between enzymes (urease, tyrosinase and carbonic anhydrase) and ligands. It was concluded that active phytochemicals were present in roots of R. odorata with potential for multiple pharmacological applications and as a latent source of pharmaceutically important compounds. This should be further explored to isolate important constituents that could be used in treating different diseases.


Asunto(s)
Antioxidantes , Anhidrasas Carbónicas , 1-Butanol , Antioxidantes/química , Diuréticos , Hemolíticos , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Ureasa
7.
Molecules ; 27(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36235221

RESUMEN

Verbena officinalis L. is a traditionally important medicinal herb that has a rich source of bioactive phytoconstituents with biological benefits. The objective of this study was to assess the metabolic profile and in vitro biological potential of V. officinalis. The bioactive phytoconstituents were evaluated by preliminary phytochemical studies, estimation of polyphenolic contents, and gas chromatography-mass spectrometry (GC-MS) analysis of all fractions (crude methanolic, n-hexane, ethyl acetate, and n-butanol) of V. officinalis. The biological investigation was performed by different assays including antioxidant assays (DPPH, ABTS, CUPRAC, and FRAP), enzyme inhibition assays (urease and α-glucosidase), and hemolytic activity. The ethyl acetate extract had the maximum concentration of total phenolic and total flavonoid contents (394.30 ± 1.09 mg GAE·g-1 DE and 137.35 ± 0.94 mg QE·g-1 DE, respectively). Significant antioxidant potential was observed in all fractions by all four antioxidant methods. Maximum urease inhibitory activity in terms of IC50 value was shown by ethyl acetate fraction (10 ± 1.60 µg mL-1) in comparison to standard hydroxy urea (9.8 ± 1.20 µg·mL-1). The n-hexane extract showed good α-glucosidase inhibitory efficacy (420 ± 20 µg·mL-1) as compared to other extract/fractions. Minimum hemolytic activity was found in crude methanolic fraction (6.5 ± 0.94%) in comparison to positive standard Triton X-100 (93.5 ± 0.48%). The GC-MS analysis of all extract/fractions of V. officinalis including crude methanolic, n-hexane, ethyl acetate, and n-butanol fractions, resulted in the identification of 24, 56, 25, and 9 bioactive compounds, respectively, with 80% quality index. Furthermore, the bioactive compounds identified by GC-MS were analyzed using in silico molecular docking studies to determine the binding affinity between ligands and enzymes (urease and α-glucosidase). In conclusion, V. officinalis possesses multiple therapeutical potentials, and further research is needed to explore its use in the treatment of chronic diseases.


Asunto(s)
Antioxidantes , Verbena , 1-Butanol , Acetatos , Antioxidantes/química , Flavonoides/química , Cromatografía de Gases y Espectrometría de Masas , Hexanos , Ligandos , Metanol/química , Simulación del Acoplamiento Molecular , Octoxinol/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Urea/análisis , Ureasa , alfa-Glucosidasas
8.
Nanomedicine (Lond) ; 19(11): 965-978, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593058

RESUMEN

Aims: Desvenlafaxine (DES) in conventional dosage forms shows initial burst release after oral administration, leading to exaggeration of its side effects. These side effects can be overcome by a sustained-release dosage form using the chemically inert, low-melting-point lipid Compritol® 888 ATO, as it reduces initial burst release. Materials & methods: The potential of DES-loaded solid lipid nanoparticles (DES-SLNs) synthesized by ultrasonication-assisted hot-melt encapsulation to modify the release of DES was investigated. Results: The entrapment efficiency of DES-SLNs was 65.90% with the in vitro release profile showing a sustained-release behavior achieving 81% cumulative release within 16 h without initial burst release. Conclusion: DES-SLNs are a potential carrier for sustained release of water-soluble antidepressant drugs such as DES.


[Box: see text].


Asunto(s)
Preparaciones de Acción Retardada , Succinato de Desvenlafaxina , Liberación de Fármacos , Nanopartículas , Succinato de Desvenlafaxina/química , Nanopartículas/química , Preparaciones de Acción Retardada/química , Ácidos Grasos/química , Portadores de Fármacos/química , Antidepresivos/química , Tamaño de la Partícula , Lípidos/química , Humanos , Composición de Medicamentos/métodos
9.
Front Biosci (Landmark Ed) ; 29(4): 165, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38682212

RESUMEN

The Editors-in-Chief have retracted the article titled "[Neuroprotection against Aluminum Chloride-Induced Hippocampus Damage in Albino Wistar Rats by Leucophyllum frutescens (Berl.) I.M. Johnst. Leaf Extracts: A Detailed Insight into Phytochemical Analysis and Antioxidant and Enzyme Inhibition Assays]" ([1]) due to significant concerns regarding the reliability and integrity of the data presented. After the publication of the article, several issues were brought to our attention regarding the originality and authenticity of the visual data within the manuscript. Specifically, Figure 4 of the article contains images that are identical to those in the previously published papers [2, 3]. This duplication of images raises serious questions about the validity of the results and the adherence to ethical standards of research. Despite multiple attempts to contact the authors for an explanation and an opportunity to address these concerns, no satisfactory response was provided. Given the lack of accountability and the serious nature of the academic misconduct implied, the Editor-in-Chief, after careful consideration and in accordance with the publication's ethical guidelines, has decided to retract the article.

10.
Heliyon ; 10(13): e33151, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027575

RESUMEN

Thevetia peruviana (T. peruviana; Family: Apocynaceae), commonly known as Lucky Nut, is a traditionally and medicinally important plant, and the barks of the plant are traditionally used as anti-inflammatory, anti-diabetic, and antibacterial remedies. Thus, this study aimed to evaluate bioactive phytochemicals and in-vitro biological activities from the bark of T. peruviana using methanolic (TPM) and dichloromethane (TPD) extracts. The GC-MS analysis showed the presence of 54 and 39 bioactive compounds in TPM and TPD, respectively. The TPM extract has a higher level of total polyphenolic contents (TPC: 70.89 ± 1.08 and 51.07 ± 0.78 mg GAE/g extracts, while TFC: 56.89 ± 1.16 and 44.12 ± 1.76 Qu.E/g extracts for TPM and TPD, respectively). Herein, the results of antioxidant activities were also found in correlation with the total polyphenolic contents i.e., depicting the higher antioxidant potential of TPM compared to TPD. The significant inhibitory activities of extracts were observed against tyrosinase (TPM; 59.43 ± 2.87 %, TPD; 53.43 ± 2.65 %), lipoxygenase (TPM; 77.1 ± 1.2 %, TPD; 59.3 ± 0.1 %), and α-glucosidase (TPM; 71.32 ± 2.44 %, TPD; 67.86 ± 3.011 %). Furthermore, in comparison to co-amoxiclave, the antibacterial property against five bacterial strains was significant assayed. The compounds obtained through GC-MS analysis were subjected to in-silico molecular docking studies, and the phyto-constituents with maximum binding scores were then subjected to ADME analysis. The results of in-silico studies revealed that the binding affinity of several phyto-constituents was even greater than that of the standard inhibitory ligands. ADME analysis showed bioavailability radars of phyto-constituents having maximum docking scores in molecular docking. The results of this study indicated that T. peruviana has bioactive phytochemicals and therapeutic potential and may provide a basis for treating metabolic disorders (inflammatory diseases like rheumatism and diabetes), bacterial infections, and skin-related problems.

11.
Saudi J Biol Sci ; 30(10): 103783, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37680976

RESUMEN

Plants have always been the prime focus in medicine industries due to their enormous ethnobotanical uses and multitude of biological and therapeutic properties. In the current study, preliminary phytochemical composition, Total phenolic content (TPC), and total flavonoid content (TFC) with the antioxidant and antibacterial activity of hydroalcoholic extract and n-hexane, chloroform and n-butanol fractions of five selected medicinal plants [Tephrosia purpurea (L.) Pers., Lavandula stoechas L., Aesculus indica (Wall. ex Cambess.) Hook, Iris ensata Thunb., and Kalanchoe pinnata (Lam.) Pers.] from Pakistan, have been evaluated. TPC and TFC were determined by Folin-Ciocalteu's and AlCl3 methods respectively. The antioxidant activity was performed by DPPH, ABTS, FRAP, and CUPRAC while the antibacterial potential of these plants was determined by agar well diffusion assay. K. pinnata (Lam.) Pers. exhibited the highest TPC (695 ± 13.2 mg.GA.Eq.g-1DE ± SD) in n-butanol fraction and the highest TFC in its chloroform faction (615 ± 6.31 mg Q.Eq.g-1 DE ± SD). The n-butanol fraction and hydroalcoholic extract of I. ensata Thunb. exhibited strong antioxidant potential by DPPH and CUPRAC assays respectively, whereas K. pinnata (Lam.) Pers. n-butanol fraction exhibited the strongest reducing potential. The hydroalcoholic extract of all tested plants exhibited significant antibacterial activity against tested bacterial strains with ZI (12-18 mm). Conclusively, K. pinnata (Lam.) Pers. (Family: Crassulaceae) and I. ensataThunb. (Family: Iridaceae) exhibited the highest antioxidant and antibacterial potential. They can be explored for the isolation of phytoconstituents responsible for this potential and serve as a lead for the production of new natural antioxidants and antibacterial agents that can be used to cure various diseases.

12.
Front Biosci (Landmark Ed) ; 28(8): 184, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37664939

RESUMEN

BACKGROUND: A previously unstudied medicinal plant, Leucophyllum frutescens (Berland.) I.M. Johnst. (Scrophulariaceae) was investigated to evaluate its potential in preventing and treating neurodegenerative diseases, including Alzheimer's disease. METHODS: Methanolic leaf extract (MELE) and its fractions (HELE, CHLE, and BULE) were evaluated for their polyphenolic content and antioxidant activity by five different methods, including in vitro enzyme inhibition assays, which are clinically linked to neurodegenerative diseases. The potentially active n-butanol fraction (BULE) was further evaluated for its neuroprotective effects using an albino rat animal model and phytoconstituents profiling using Liquid chromatography with tandem mass spectrometry (LC-MS/MS), and in silico molecular docking by Maestro® Schrödinger. RESULTS: The n-butanol fraction (BULE) in the hydroalcoholic leaf extract exhibited the highest total phenolic content (230.435 ± 1.575 mg gallic acid equivalent gm-1± SD). The chloroform leaf extract exhibited the highest total flavonoid content (293.343 ± 3.756 mg quercetin equivalent gm-1± SD) as well as the highest antioxidant content, which was equivalent to Trolox, with five assay methods. Similarly, the chloroform and n-butanol fractions from the hydroalcoholic leaf extract significantly inhibited human acetylcholinesterase and butyrylcholinesterase with their IC50 values of 12.14 ± 0.85 and 129.73 ± 1.14 µg∙mL-1, respectively. The in vivo study revealed that BULE exhibited a significant neuroprotective effect at doses of 200 and 400 mg/kg/day in an aluminum chloride-induced neurodegenerative albino rat model. The LC-MS/MS analysis of BULE tentatively confirmed the presence of biologically active secondary metabolites, such as theobromine, propyl gallate, quercetin-3-O-glucoside, myricetin-3-acetylrhamnoside, isoquercitrin-6'-O-malonate, diosmetin-7-O-glucuronide-3'-O-pentose, pinoresinol diglucoside, asarinin, eridictoyl, epigallocatechin, methyl gallate derivative, and eudesmin. The results from the computational molecular docking of the identified secondary metabolites revealed that diosmetin-7-O-glucuronide-3'-O-pentose had the highest binding affinity to human butyrylcholinesterase, while isoquercetin-6'-O-malonate had the highest to human acetylcholinesterase, and pinoresinol diglucoside to human salivary alpha-amylase. CONCLUSIONS: The present study concluded a need for further exploration into this medicinal plant, including the isolation of the bioactive compounds responsible for its neuroprotective effects.


Asunto(s)
Fármacos Neuroprotectores , Scrophulariaceae , Ratas , Animales , Humanos , Antioxidantes/farmacología , Neuroprotección , Fármacos Neuroprotectores/farmacología , Acetilcolinesterasa , Cloruro de Aluminio , Butirilcolinesterasa , 1-Butanol , Cloroformo , Cromatografía Liquida , Glucurónidos , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Hipocampo , Extractos Vegetales/farmacología
13.
Front Chem ; 11: 1273191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025070

RESUMEN

Typha domingensis, a medicinal plant with significant traditional importance for curing various human diseases, has potentially bioactive compounds but was less explored previously. Therefore, this study aims to investigate the therapeutic potential of T. domingensis by evaluating the phytochemical profile through high-performance liquid chromatography (HPLC) techniques and its biological activities (in vitro and in vivo) from the methanolic extract derived from the entire plant (TDME). The secondary metabolite profile of TDME regulated by reverse phase ultra-high-performance liquid chromatography-mass spectrometry (RP-UHPLC-MS) revealed some bioactive compounds by -ve and +ve modes of ionization. The HPLC quantification study showed the precise quantity of polyphenols (p-coumaric acid, 207.47; gallic acid, 96.25; and kaempferol, 95.78 µg/g extract). The enzyme inhibition assays revealed the IC50 of TDME as 44.75 ± 0.51, 52.71 ± 0.01, and 67.19 ± 0.68 µgmL-1, which were significant compared to their respective standards (indomethacin, 18.03 ± 0.12; quercetin, 4.11 ± 0.01; and thiourea, 8.97 ± 0.11) for lipoxygenase, α-glucosidase, and urease, respectively. Safety was assessed by in vitro hemolysis (4.25% ± 0.16% compared to triton × 100, 93.51% ± 0.36%), which was further confirmed (up to 10 g/kg) by an in vivo model of rats. TDME demonstrated significant (p < 0.05) potential in analgesic activity by hot plate and tail immersion tests and anti-inflammatory activity by the carrageenan-induced hind paw edema model. Pain latency decreased significantly, and the anti-inflammatory effect increased in a dose-dependent way. Additionally, in silico molecular docking revealed that 1,3,4,5-tetracaffeoylquinic acid and formononetin 7-O-glucoside-6″-O-malonate possibly contribute to enzyme inhibitory activities due to their higher binding affinities compared to standard inhibitors. An in silico absorption, distribution, metabolism, excretion, and toxicological study also predicted the pharmacokinetics and safety of the chosen compounds identified from TDME. To sum up, it was shown that TDME contains bioactive chemicals and has strong biological activities. The current investigations on T. domingensis could be extended to explore its potential applications in nutraceutical industries and encourage the isolation of novel molecules with anti-inflammatory and analgesic effects.

14.
PLoS One ; 17(3): e0266094, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35358239

RESUMEN

OBJECTIVES: Owing to extraordinary healing power, Terminalia species have been used in traditional medicine systems to treat various diseases. Many folklore uses of Terminalia neotaliala (Madagascar's almond) included treating arterial hypertension, diabetes, diarrhea, dysentery, colic, oral and digestive candidiasis, intestinal parasitic infections, inflammatory skin conditions, postpartum care, and mycotic infections but nevertheless scientifically explored for its medicinal and pharmacological importance. Therefore, the current study intended to prepare methanolic extract and its fractionation with hexane, chloroform, and butanol followed by evaluation of their polyphenolic content, biological activities, and LCMS analysis. The biological study included antioxidant activity and enzyme inhibition assay i.e., α-glucosidase and urease. The insight study of biologically active secondary metabolites of butanol fraction (BUAE) was performed through LCMS. METHODS: The total phenolic content (TPC) and total flavonoid content (TFC) of hydroalcoholic and its fractions were estimated using the Folin-Ciocalteu and aluminum chloride method. The total tannin content (TTC) was determined using the Folin-Denis spectrophotometric method. Similarly, the antioxidant potential of HAAE, HEAE, CFAE, and BUAE was determined using four methods as DPPH (1,1-diphenyl-2-picrylhydrazyl), 2,2-azinobis(3-ethylbenothiazoline)-6-sulfonic acid, cupric reducing antioxidant capacity (CUPRAC), and ferric reducing antioxidant power (FRAP). The sample extracts were also evaluated against two clinically important enzymes i.e., α-glucosidase and urease. RESULTS: The BUAE (butanol aerial fraction) showed the highest TPC (234.79 ± 0.12 mg.GAE.g-1 DE), TFC (320.75 ± 12.50 mg.QE.g-1 DE), and TTC (143.36 ± 4.32 mg.TA.Eq.g-1 DE). The BUAE also showed the highest scavenging potential determined by DPPH (642.65 ± 1.11 mg.TEq.g-1 DE) and ABTS (543.17 ± 1.11 mg.TEq.g-1 DE), and the metal-reducing capacity determined by CUPRAC (1510.41 ± 4.45 mg.TEq.g-1 DE) and FRAP (739.81 ± 19.32 mg.TEq.g-1 DE). The LCMS of BUAE identified 18 different biologically active phytoconstituents validating a rich source of hydrolyzable tannins including ellagitannins and gallitannins. CONCLUSION: The present study concluded that T. neotaliala is a rich source of polyphenols capable of neutralizing the damage caused by free radical accumulation in the cells and tissues. The significant antioxidant results and identification of high molecular weight hydrolyzable tannins enlightened the medicinal importance of T. neotaliala.


Asunto(s)
Antioxidantes , Terminalia , Antioxidantes/química , Antioxidantes/farmacología , Butanoles , Flavonoides , Taninos Hidrolizables , Fenoles/química , Fenoles/farmacología , Fitoquímicos/farmacología , Componentes Aéreos de las Plantas , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ureasa , alfa-Glucosidasas
15.
Front Chem ; 10: 1077581, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36688045

RESUMEN

Introduction: Cardamine amara L. (Brassicaceae) is an important edible plant with ethnomedicinal significance. This study aimed at evaluating the phytochemical composition, anti-inflammatory, antioxidant and cytotoxicity aspects of the hydro-alcoholic extract of C. amara (HAECA). Methods: The phytochemical composition was evaluated through total phenolic contents (TPC), total flavonoid contents (TFC) determination and UPLC-QTOF-MS profiling. Anti-inflammatory evaluation of HAECA was carried out through the carrageenan induced paw edema model. Four in vitro methods were applied in the antioxidant evaluation of HAECA. MTT assay was used to investigate the toxicity profile of the species against human normal liver cells (HL7702), human liver cancer cell lines (HepG2) and human breast cancer cell lines (MCF-7). Three major compounds (Gentisic acid, skullcapflavone and conidendrine) identified in UPLC-Q-TOF-MS analysis were selected for in silico study against cyclooxygenase (COX-I and COX-II). Results and Discussion: The findings revealed that HAECA is rich in TPC (39.32 ± 2.3 mg GAE/g DE) and TFC (17.26 ± 0.8 mg RE/g DE). A total of 21 secondary metabolites were tentatively identified in UPLC-Q-TOF-MS analysis. In the MTT cytotoxicity assay, the extract showed low toxicity against normal cell lines, while significant anticancer activity was observed against human liver and breast cancer cells. The carrageenan induced inflammation was inhibited by HAECA in a dose dependent manner and showed a marked alleviation in the levels of oxidative stress (catalase, SOD, GSH) and inflammatory markers (TNF-α, IL-1ß). Similarly, HAECA showed maximum antioxidant activity through the Cupric reducing power antioxidant capacity (CUPRAC) assay (31.21 ± 0.3 mg TE/g DE). The in silico study revealed a significant molecular docking score of the three studied compounds against COX-I and COX-I. Conclusively the current study encourages the use of C. amara as a novel polyphenolic rich source with anti-inflammatory and antioxidant potential and warrants further investigations on its toxicity profile.

16.
PLoS One ; 15(9): e0238954, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32941505

RESUMEN

Desvenlafaxine (DES) and Alprazolam (ALP) are the drugs commonly prescribed together for the treatment of Major Depressive Disorders (MDD). A literature survey revealed, there is no method for the simultaneous determination of these two drugs. The purpose of this research was to develop and validate a simple, accurate, precise, robust, and isocratic RP-HPLC method for simultaneous determination of DES and ALP in human spiked plasma using UV-detector in short analysis time. The method utilized Hypersil BDS C18 (250 mm×4.6 mm, 5 µm) through an isocratic mode of elution using HPLC grade acetonitrile and 0.02M KH2PO4 buffer (65:35) and 0.1% Tri Fluoro Acetic acid (TFA) with pH 4.00 adjusted with 1M KOH. The flow rate was 1.00 mLmin-1 and elution of the drugs was monitored at 230nm. The elution time of DES and ALP was 4.011 and 5.182 minutes respectively. The method was linear for the concentration range 10-150 µgmL-1 for DES and 5.0-75.0 µgmL-1 for ALP. According to the validation results, the method is sensitive with Limit of Detection (LOD) 4.740 µgmL-1 and Limit of Quantification (LOQ) of 14.365 µgmL-1 for DES and LOD 1.891 µgmL-1 & LOQ 5.730 µgmL-1 for ALP. The reproducibility of results with minute deliberate variations in method parameters has proven that the method is robust. The data from stability studies show a non-significant change in drugs solutions for 2 months. The optimized method was validated as per International Conference for Harmonisation (ICH) Q2(R1) guidelines. This method can be used for the estimation of DES and ALP in plasma and can evaluate pharmacokinetic parameters of both drugs simultaneously.


Asunto(s)
Alprazolam/aislamiento & purificación , Cromatografía Líquida de Alta Presión/métodos , Succinato de Desvenlafaxina/aislamiento & purificación , Alprazolam/análisis , Alprazolam/sangre , Succinato de Desvenlafaxina/análisis , Succinato de Desvenlafaxina/sangre , Humanos , Límite de Detección , Soluciones Farmacéuticas , Plasma/química , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA