Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Ecol ; 84(3): 717-729, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34623462

RESUMEN

The short time-scale dynamics of three families of Bdellovibrio and like organisms (i.e. Bdellovibrionaceae, Peredibacteraceae, and Bacteriovoracaceae) were studied on the surface waters of Lake Geneva in summer. Using mesocosms deployed nearshore in July 2019, we simulated an extreme climatic event (an input of carbon from the watershed in response to runoff from the catchment, light reduction, and mixing in response to stormy conditions) and aimed to study the impact of both abiotic and biotic factors on their dynamics. The three families of Bdellovibrio and like organisms (BALOs) showed different dynamics during the experiment. Peredibacteraceae was the most abundant group, whereas Bacteriovoracaceae was the least abundant. Compared with the other two families, the abundance of Bdellovibrionaceae did not fluctuate, remaining relatively stable over time. Environmental variables only partially explained the dynamics of these families; in particular, temperature, pH, and chloride concentrations were positively correlated with Bacteriovoracaceae, Bdellovibrionaceae, and Peredibacteraceae abundance, respectively. Prokaryote-like particles (PLPs), such as those with high DNA content (HDNA), were strongly and positively correlated with Peredibacteraceae and Bacteriovoracaceae. In contrast, no relationships were found between Bdellovibrionaceae and PLP abundance, nor between the virus-like particles (VLPs) and the different BALOs. Overall, the experiment revealed that predation was stable in the face of the simulated climatic events. In addition, we observed that Peredibacteraceae and Bacteriovoracaceae share common traits, while Bdellovibrionaceae seems to constitute a distinct category.


Asunto(s)
Bdellovibrio , Deltaproteobacteria , Bdellovibrio/genética , Lagos , Filogenia , Deltaproteobacteria/genética
2.
Water Resour Res ; 54(10): 8442-8455, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30555186

RESUMEN

Rapid increase in lake temperature can cause a shift toward the dominance of warm temperature tolerant species, including Cyanobacteria that are deficient in polyunsaturated fatty acids (PUFA) supporting consumer growth and reproduction. To increase our understanding of how changes in physicochemical lake parameters affect phytoplankton composition and the provision of dietary quality to consumers in subalpine oligotrophic lakes, we conducted a multiannual study (2013-2015) in the 34-m-deep Lake Lunz and investigated interannual changes in (a) water temperature, transparency, and lake inflow; (b) seston (<30-µm particle size class) biomass and taxonomy; and (c) seston nutritional quality, assessed by its PUFA composition. The phytoplankton taxonomic composition within this seston size class varied mostly by changes in physical parameters (temperature, conductivity, lake transparency, and days of full ice cover). The dietary quality of seston varied mostly with lake physical parameters and, to a lesser extent, with phytoplankton taxonomic composition, suggesting that the nutritional quality at the base of the food web in Lake Lunz is likely to respond directly to changes in lake physical parameters. This multiannual data set, combining monthly values for physicochemical variables, grazable phytoplankton composition, and fatty acids in seston, provides nutritional information of how annual weather changes may induce changes at the base of the food web in this and perhaps also other oligotrophic subalpine lakes.

3.
Appl Environ Microbiol ; 77(16): 5610-8, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21724889

RESUMEN

We explored the abundance and infection rates of viruses on a time series scale in the euphotic zone of the humic mesotrophic Lake Vassivière (Massif Central, France) and compared them to nonhumic lakes of contrasting trophy (i.e., the oligomesotrophic Lake Pavin and the eutrophic Lake Aydat) located in the same geographical region and sampled during the same period. In Lake Vassivière, the abundances of virus-like particles (range, 1.7 × 10(10) to 2.6 × 10(10) liter(-1)) were significantly (P < 0.001) lower than in Lakes Pavin and Aydat. The percentage of virus-infected prokaryotic cells (mean, 18.0%) was significantly higher (P < 0.001) in Vassivière than in Pavin (mean, 11.5%) and Aydat (mean, 9.7%). In Vassivière, the abundance of prokaryotes was a good predictor (r = 0.78, P < 0.001) of the number of virus-like particles, while the potential grazing rate from heterotrophic nanoflagellates was positively correlated to the viral infection rate (r = 0.75, P < 0.001; n = 20), indicating the prevalence of cycling interactions among viruses, prokaryotes, and grazers, which is in agreement with past experiments. The absence of correlation between chlorophyll a concentrations (Chl) and viral parameters suggested that the resources for the lytic activity of viruses in Vassivière were mainly under allochthonous control, through host activity. Indeed, compilation of data obtained from several nonhumic lakes in the French Massif Central revealed that Chl was positively correlated to the abundance of virus-like particles at concentrations above 0.5 µg Chl liter(-1) and negatively at concentrations below 0.5 µg Chl liter(-1), suggesting that phytoplankton-derived resources could force prokaryotic growth to attain a certain threshold level when the host availability is sufficient to boost the proliferation of viruses. Therefore, based on the high level of lytic infection rates in Lake Vassivière, we conclude that viruses are key agents for prokaryotic mortality and could influence the food web dynamics in humic lakes, which may ultimately depend on the internal cycling of resources and, perhaps, mainly on the allochthonous inputs and the associated humic substances.


Asunto(s)
Clorofila/química , Lagos/virología , Células Procariotas/virología , Virus/crecimiento & desarrollo , Análisis de Varianza , Clorofila A , Eutrofización , Conducta Alimentaria , Cadena Alimentaria , Francia , Procesos Heterotróficos , Sustancias Húmicas , Fitoplancton/crecimiento & desarrollo , Temperatura , Fenómenos Fisiológicos de los Virus , Virus/patogenicidad , Agua/química , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA