Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Virol ; 96(4): e29594, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38576317

RESUMEN

The HIV capsid (CA) protein is a promising target for anti-AIDS treatment due to its critical involvement in viral replication. Herein, we utilized the well-documented CA inhibitor PF74 as our lead compound and designed a series of low-molecular-weight phenylalanine derivatives. Among them, compound 7t exhibited remarkable antiviral activity with a high selection index (EC50 = 0.040 µM, SI = 2815), surpassing that of PF74 (EC50 = 0.50 µM, SI = 258). Furthermore, when evaluated against the HIV-2 strain, 7t (EC50 = 0.13 µM) demonstrated approximately 14-fold higher potency than that of PF74 (EC50 = 1.76 µM). Insights obtained from surface plasmon resonance (SPR) revealed that 7t exhibited stronger target affinity to the CA hexamer and monomer in comparison to PF74. The potential interactions between 7t and the HIV-1 CA were further elucidated using molecular docking and molecular dynamics simulations, providing a plausible explanation for the enhanced target affinity with 7t over PF74. Moreover, the metabolic stability assay demonstrated that 7t (T1/2 = 77.0 min) significantly outperforms PF74 (T1/2 = 0.7 min) in human liver microsome, exhibiting an improvement factor of 110-fold. In conclusion, 7t emerges as a promising drug candidate warranting further investigation.


Asunto(s)
Fármacos Anti-VIH , Seropositividad para VIH , Humanos , Cápside/metabolismo , Fenilalanina/farmacología , Fenilalanina/metabolismo , Simulación del Acoplamiento Molecular , Fármacos Anti-VIH/farmacología , Proteínas de la Cápside/metabolismo , Antirretrovirales
2.
Chemistry ; : e202402214, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140423

RESUMEN

Herein, we report an efficient strategy towards the synthesis of amino acid substituted isoquinoline derivatives via reaction of unprotected amino acid/amino acid ester/amino acid based drugs with 2-(2-oxo-2-aryl/alkylethyl)benzonitrile under metal-free conditions. The developed protocol is highly simple and shows functional group tolerance to provide corresponding novel amino acid substituted isoquinolines in aqueous medium. The applicability of the reaction is an easier modification of well-known drugs and successfully extended to gram-scale synthesis.

3.
Rev Med Virol ; 33(2): e2419, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36635519

RESUMEN

Junin virus consists of ribonucleic acid as the genome and is responsible for a rapidly changing tendency of the virus. The virus is accountable for ailments in the human body and causes Argentine Haemorrhagic Fever (AHF). The infection is may be transmitted through contact between an infected animal/host and a person, and later between person to person. Prevention of outbreaks of AHF in humans can be a tough practice, as their occurrence is infrequent and unpredictable. In this review, recent information from the past 5 years available on the Junin virus including the risk of its emergence, infectious agents, its pathogenesis in humans, available diagnostic and therapeutic approaches, and disease management has been summarised. Altogether, this article would be highly significant in understanding the mechanistic basis behind virus interaction and other processes during the life cycle. Currently, no specific therapeutic options are available to treat the Junin virus infection. The information covered in this review could be important for finding possible treatment options for Junin virus infections.


Asunto(s)
Fiebre Hemorrágica Americana , Virus Junin , Animales , Humanos , Virus Junin/genética , Fiebre Hemorrágica Americana/diagnóstico , Fiebre Hemorrágica Americana/patología
4.
Med Res Rev ; 42(1): 56-82, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33851452

RESUMEN

Calcium channels (CCs), a group of ubiquitously expressed membrane proteins, are involved in many pathophysiological processes of protozoan parasites. Our understanding of CCs in cell signaling, organelle function, cellular homeostasis, and cell cycle control has led to improved insights into their structure and functions. In this article, we discuss CCs characteristics of five major protozoan parasites Plasmodium, Leishmania, Toxoplasma, Trypanosoma, and Cryptosporidium. We provide a comprehensive review of current antiparasitic drugs and the potential of using CCs as new therapeutic targets. Interestingly, previous studies have demonstrated that human CC modulators can kill or sensitize parasites to antiparasitic drugs. Still, none of the parasite CCs, pumps, or transporters has been validated as drug targets. Information for this review draws from extensive data mining of genome sequences, chemical library screenings, and drug design studies. Parasitic resistance to currently approved therapeutics is a serious and emerging threat to both disease control and management efforts. In this article, we suggest that the disruption of calcium homeostasis may be an effective approach to develop new anti-parasite drug candidates and reduce parasite resistance.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Parásitos , Animales , Calcio/metabolismo , Calcio/farmacología , Homeostasis , Humanos
5.
Mol Cancer ; 21(1): 31, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35081970

RESUMEN

Head and neck cancer is the sixth most common cancer across the globe. This is generally associated with tobacco and alcohol consumption. Cancer in the pharynx majorly arises through human papillomavirus (HPV) infection, thus classifying head and neck squamous cell carcinoma (HNSCC) into HPV-positive and HPV-negative HNSCCs. Aberrant, mesenchymal-epithelial transition factor (c-MET) signal transduction favors HNSCC progression by stimulating proliferation, motility, invasiveness, morphogenesis, and angiogenesis. c-MET upregulation can be found in the majority of head and neck squamous cell carcinomas. c-MET pathway acts on several downstream effectors including phospholipase C gamma (PLCγ), cellular Src kinase (c-Src), phosphotidylinsitol-3-OH kinase (PI3K), alpha serine/threonine-protein kinase (Akt), mitogen-activated protein kinase (MAPK), and wingless-related integration site (Wnt) pathways. c-MET also establishes a crosstalk pathway with epidermal growth factor receptor (EGFR) and contributes towards chemoresistance in HNSCC. In recent years, the signaling communications of c-MET/HGF in metabolic dysregulation, tumor-microenvironment and immune modulation in HNSCC have emerged. Several clinical trials have been established against c-MET/ hepatocyte growth factor (HGF) signaling network to bring up targeted and effective therapeutic strategies against HNSCC. In this review, we discuss the molecular mechanism(s) and current understanding of c-MET/HGF signaling and its effect on HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello/etiología , Neoplasias de Cabeza y Cuello/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Resistencia a Antineoplásicos/genética , Metabolismo Energético , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Humanos , Inmunidad , Resultado del Tratamiento , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
6.
J Med Virol ; 94(12): 5975-5986, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35949003

RESUMEN

Human immunodeficiency virus (HIV) capsid (CA) protein is a promising target for developing novel anti-HIV drugs. Starting from highly anticipated CA inhibitors PF-74, we used scaffold hopping strategy to design a series of novel 1,2,4-triazole phenylalanine derivatives by targeting an unexplored region composed of residues 106-109 in HIV-1 CA hexamer. Compound d19 displayed excellent antiretroviral potency against HIV-1 and HIV-2 strains with EC50 values of 0.59 and 2.69 µM, respectively. Additionally, we show via surface plasmon resonance (SPR) spectrometry that d19 preferentially interacts with the hexameric form of CA, with a significantly improved hexamer/monomer specificity ratio (ratio = 59) than PF-74 (ratio = 21). Moreover, we show via SPR that d19 competes with CPSF-6 for binding to CA hexamers with IC50 value of 33.4 nM. Like PF-74, d19 inhibits the replication of HIV-1 NL4.3 pseudo typed virus in both early and late stages. In addition, molecular docking and molecular dynamics simulations provide binding mode information of d19 to HIV-1 CA and rationale for improved affinity and potency over PF-74. Overall, the lead compound d19 displays a distinct chemotype form PF-74, improved CA affinity, and anti-HIV potency.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Fármacos Anti-VIH/uso terapéutico , Proteínas de la Cápside/metabolismo , Infecciones por VIH/tratamiento farmacológico , VIH-1/química , Humanos , Simulación del Acoplamiento Molecular , Fenilalanina/farmacología , Fenilalanina/uso terapéutico , Triazoles , Replicación Viral
7.
Org Biomol Chem ; 20(33): 6673-6679, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35947022

RESUMEN

Herein, we have optimized a highly efficient and neat mechanochemical grinding procedure for the facile synthesis of N-substituted amines using easily available substituted halides and amines. The developed protocol is applicable for gram scale synthesis as well. Advantageous features of this strategy include mild and neat reaction conditions, a short reaction time at room temperature and isolation of products without column chromatography in excellent yields.


Asunto(s)
Aminas , Aminas/química , Solventes/química
8.
Methods ; 195: 44-56, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33639316

RESUMEN

Novel coronavirus SARS-CoV-2continues tospread rapidly worldwide and causing serious health and economic loss. In the absence of any effective treatment, various in-silico approaches are being explored towards the therapeutic discovery against COVID-19. Targeting multiple key enzymes of SARS-CoV-2 with a single potential drug could be an important in-silico strategy to tackle the therapeutic emergency. A number of Food and Drug Administration (FDA) approved drugs entered into clinical stages were originated from multi-target approaches with an increased rate, 16-21% between 2015 and 2017. In this study, we selected an FDA-approved library (Prestwick Chemical Library of 1520 compounds) and implemented in-silico virtual screening against multiple protein targets of SARS-CoV-2 on the Glide module of Schrödinger software (release 2020-1). Compounds were analyzed for their docking scores and the top-ranked against each targeted protein were further subjected to Molecular Dynamics (MD) simulations to assess the binding stability of ligand-protein complexes. A multi-targeting approach was optimized that enabled the analysis of several compounds' binding efficiency with more than one protein targets. It was demonstrated that Diosmin (6) showed the highest binding affinity towards multiple targets with binding free energy (kcal/mol) values of -63.39 (nsp3); -62.89 (nsp9); -31.23 (nsp12); and -65.58 (nsp15). Therefore, our results suggests that Diosmin (6) possesses multi-targeting capability, a potent inhibitor of various non-structural proteins of SARS-CoV-2, and thus it deserves further validation experiments before using as a therapeutic against COVID-19 disease.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Diosmina/farmacología , Antivirales/uso terapéutico , COVID-19/virología , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Diosmina/uso terapéutico , Descubrimiento de Drogas , Endorribonucleasas/antagonistas & inhibidores , Endorribonucleasas/metabolismo , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas de Unión al ARN , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo
9.
Methods ; 195: 57-71, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33453392

RESUMEN

SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2'-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n = 5903). The screening was performed against viral targets using three sequential docking modes (i.e., HTVS, SP, and XP). Virtual screening identified ∼290 potential inhibitors based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. The resulting top eight hits were tested for their SARS-CoV-2 anti-viral activity in-vitro. Among these, a known inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), was found to be a potent inhibitor of SARS-CoV-2. Further, target validation through enzymatic assays confirmed 3CLpro to be the target. This is the first study that has showcased BIM IX as a COVID-19 inhibitor thereby validating our pipeline.


Asunto(s)
Antivirales/administración & dosificación , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Sistemas de Liberación de Medicamentos/normas , Indoles/administración & dosificación , Maleimidas/administración & dosificación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Antivirales/metabolismo , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Reposicionamiento de Medicamentos/métodos , Reposicionamiento de Medicamentos/normas , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Indoles/química , Indoles/metabolismo , Maleimidas/química , Maleimidas/metabolismo , Simulación del Acoplamiento Molecular/métodos , Simulación del Acoplamiento Molecular/normas , Estructura Secundaria de Proteína , Reproducibilidad de los Resultados , SARS-CoV-2/química
10.
Adv Exp Med Biol ; 1358: 257-273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35641874

RESUMEN

Nowadays, about 14% of couples have difficulty in conceiving, and half of the cases are attributed to men. Asthenozoospermia or poor sperm motility is considered as the cause of infertility in males which is most common. Even though energy metabolism is considered the main reason for the etiology of asthenospermia, few attempts are made to determine the pathway of its metabolic potential. Recognition of cellular as well as molecular pathways that lead to reduced sperm motility may lead to the implementation of new therapeutic strategies to eliminate low sperm motility in people with asthenozoospermia. This review article discusses the key causes of decreased sperm motility and some of the muted genes and metabolic causes of the same.


Asunto(s)
Astenozoospermia , Infertilidad Masculina , Astenozoospermia/genética , Astenozoospermia/metabolismo , Metabolismo Energético , Humanos , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Motilidad Espermática/genética , Espermatozoides/metabolismo
11.
Molecules ; 27(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36144727

RESUMEN

As a key structural protein, HIV capsid (CA) protein plays multiple roles in the HIV life cycle, and is considered a promising target for anti-HIV treatment. Based on the structural information of CA modulator PF-74 bound to HIV-1 CA hexamer, 18 novel phenylalanine derivatives were synthesized via the Ugi four-component reaction. In vitro anti-HIV activity assays showed that most compounds exhibited low-micromolar-inhibitory potency against HIV. Among them, compound I-19 exhibited the best anti-HIV-1 activity (EC50 = 2.53 ± 0.84 µM, CC50 = 107.61 ± 27.43 µM). In addition, I-14 displayed excellent HIV-2 inhibitory activity (EC50 = 2.30 ± 0.11 µM, CC50 > 189.32 µM) with relatively low cytotoxicity, being more potent than that of the approved drug nevirapine (EC50 > 15.02 µM, CC50 > 15.2 µM). Additionally, surface plasmon resonance (SPR) binding assays demonstrated direct binding to the HIV CA protein. Moreover, molecular docking and molecular dynamics simulations provided additional information on the binding mode of I-19 to HIV-1 CA. In summary, we further explored the structure­activity relationships (SARs) and selectivity of anti-HIV-1/HIV-2 of PF-74 derivatives, which is conducive to discovering efficient anti-HIV drugs.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Peptidomiméticos , Fármacos Anti-VIH/química , Cápside , Proteínas de la Cápside/metabolismo , Diseño de Fármacos , VIH-1/metabolismo , Simulación del Acoplamiento Molecular , Nevirapina , Peptidomiméticos/farmacología , Fenilalanina , Relación Estructura-Actividad
12.
Bioorg Med Chem ; 48: 116414, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34562701

RESUMEN

The HIV-1 Capsid (CA) is considered as a promising target for the development of potent antiviral drugs, due to its multiple roles during the viral life cycle. Herein, we report the design, synthesis, and antiviral activity evaluation of series of novel phenylalanine derivatives as HIV-1 CA protein inhibitors. Among them, 4-methoxy-N-methylaniline substituted phenylalanine (II-13c) and indolin-5-amine substituted phenylalanine (V-25i) displayed exceptional anti-HIV-1 activity with the EC50 value of 5.14 and 2.57 µM respectively, which is slightly weaker than that of lead compound PF-74 (EC50 = 0.42 µM). Besides, surface plasmon resonance (SPR) binding assay demonstrated II-13c and V-25i prefer to combine with CA hexamer rather than monomer, which is similar to PF-74. Subsequently, molecular dynamics simulation (MD) revealed potential interactions between representative compounds with HIV-1 CA hexamer. Overall, this work laid a solid foundation for further structural optimization to discover novel promising HIV-1 CA inhibitors.


Asunto(s)
Fármacos Anti-VIH/farmacología , Proteínas de la Cápside/antagonistas & inhibidores , Diseño de Fármacos , VIH-1/efectos de los fármacos , Fenilalanina/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Proteínas de la Cápside/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , VIH-1/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Estructura Molecular , Fenilalanina/síntesis química , Fenilalanina/química , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
13.
Bioorg Med Chem ; 47: 116393, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34509862

RESUMEN

The continued toll of COVID-19 has halted the smooth functioning of civilization on a global scale. With a limited understanding of all the essential components of viral machinery and the lack of structural information of this new virus, initial drug discovery efforts had limited success. The availability of high-resolution crystal structures of functionally essential SARS-CoV-2 proteins, including 3CLpro, supports the development of target-specific therapeutics. 3CLpro, the main protease responsible for the processing of viral polypeptide, plays a vital role in SARS-CoV-2 viral replication and translation and is an important target in other coronaviruses. Additionally, 3CLpro is the target of repurposed drugs, such as lopinavir and ritonavir. In this study, target proteins were retrieved from the protein data bank (PDB IDs: 6 M03, 6LU7, 2GZ7, 6 W63, 6SQS, 6YB7, and 6YVF) representing different open states of the main protease to accommodate macromolecular substrate. A hydroxyethylamine (HEA) library was constructed from harvested chemical structures from all the series being used in our laboratories for screening against malaria and Leishmania parasites. The database consisted of ∼1000 structure entries, of which 70% were new to ChemSpider at the time of screening. This in-house library was subjected to high throughput virtual screening (HTVS), followed by standard precision (SP) and then extra precision (XP) docking (Schrodinger LLC 2021). The ligand strain and complex energy of top hits were calculated by Molecular Mechanics Generalized Born Surface Area (MM/GBSA) method. Promising hit compounds (n = 40) specifically binding to 3CLpro with high energy and average MM/GBSA scores were then subjected to (100-ns) MD simulations. Using this sequential selection followed by an in-silico validation approach, we found a promising HEA-based compound (N,N'-((3S,3'S)-piperazine-1,4-diylbis(3-hydroxy-1-phenylbutane-4,2-diyl))bis(2-(5-methyl-1,3-dioxoisoindolin-2-yl)-3-phenylpropanamide)), which showed high in vitro antiviral activity against SARS-CoV-2. Further to reduce the size of the otherwise larger ligand, a pharmacophore-based predicted library of âˆ¼42 derivatives was constructed, which were added to the previous compound library and rescreened virtually. Out of several hits from the predicted library, two compounds were synthesized, tested against SARS-CoV-2 culture, and found to have markedly improved antiviral activity.


Asunto(s)
Antivirales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Etilaminas/química , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , Animales , Antivirales/metabolismo , Antivirales/farmacología , Sitios de Unión , COVID-19/patología , COVID-19/virología , Dominio Catalítico , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Proteasas 3C de Coronavirus/metabolismo , Etilaminas/metabolismo , Etilaminas/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , SARS-CoV-2/aislamiento & purificación , Termodinámica , Células Vero
14.
Molecules ; 26(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34641413

RESUMEN

Zika virus (ZIKV) is a mosquito-borne virus belonging to the Flaviviridae family and is responsible for an exanthematous disease and severe neurological manifestations, such as microcephaly and Guillain-Barré syndrome. ZIKV has a single strand positive-sense RNA genome that is translated into structural and non-structural (NS) proteins. Although it has become endemic in most parts of the tropical world, Zika still does not have a specific treatment. Thus, in this work we evaluate the cytotoxicity and antiviral activities of 14 hybrid compounds formed by 1H-1,2,3-triazole, naphthoquinone and phthalimide groups. Most compounds showed low cytotoxicity to epithelial cells, specially the 3b compound. After screening with all compounds, 4b was the most active against ZIKV in the post-infection test, obtaining a 50% inhibition concentration (IC50) of 146.0 µM and SI of 2.3. There were no significant results for the pre-treatment test. According to the molecular docking compound, 4b was suggested with significant binding affinity for the NS5 RdRp protein target, which was further corroborated by molecular dynamic simulation studies.


Asunto(s)
Antivirales/farmacología , Triazoles/farmacología , Replicación Viral/efectos de los fármacos , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/efectos de los fármacos , Animales , Antivirales/química , Chlorocebus aethiops , Ensayos Analíticos de Alto Rendimiento , Simulación del Acoplamiento Molecular , Triazoles/química , Células Vero , Infección por el Virus Zika/virología
15.
J Chem Inf Model ; 60(12): 5754-5770, 2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-32551639

RESUMEN

The novel coronavirus, SARS-CoV-2, has caused a recent pandemic called COVID-19 and a severe health threat around the world. In the current situation, the virus is rapidly spreading worldwide, and the discovery of a vaccine and potential therapeutics are critically essential. The crystal structure for the main protease (Mpro) of SARS-CoV-2, 3-chymotrypsin-like cysteine protease (3CLpro), was recently made available and is considerably similar to the previously reported SARS-CoV. Due to its essentiality in viral replication, it represents a potential drug target. Herein, a computer-aided drug design (CADD) approach was implemented for the initial screening of 13 approved antiviral drugs. Molecular docking of 13 antivirals against the 3-chymotrypsin-like cysteine protease (3CLpro) enzyme was accomplished, and indinavir was described as a lead drug with a docking score of -8.824 and a XP Gscore of -9.466 kcal/mol. Indinavir possesses an important pharmacophore, hydroxyethylamine (HEA), and thus, a new library of HEA compounds (>2500) was subjected to virtual screening that led to 25 hits with a docking score more than indinavir. Exclusively, compound 16 with a docking score of -8.955 adhered to drug-like parameters, and the structure-activity relationship (SAR) analysis was demonstrated to highlight the importance of chemical scaffolds therein. Molecular dynamics (MD) simulation analysis performed at 100 ns supported the stability of 16 within the binding pocket. Largely, our results supported that this novel compound 16 binds with domains I and II, and the domain II-III linker of the 3CLpro protein, suggesting its suitability as a strong candidate for therapeutic discovery against COVID-19.


Asunto(s)
Antivirales/química , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/metabolismo , Etanolaminas/química , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Sitios de Unión , Diseño de Fármacos , Etanolaminas/farmacología , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad
16.
Med Res Rev ; 38(5): 1511-1535, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29372568

RESUMEN

Over time, several exciting advances have been made in the treatment and prevention of malaria; however, this devastating disease continues to be a major global health problem and affects millions of people every year. Notably, the paucity of new efficient drug molecules and the inevitable drug resistance of the malaria parasite, Plasmodium falciparum, against frontline therapeutics are the foremost struggles facing malaria eradication initiatives. According to the malaria eradication agenda, the discovery of new chemical entities that can destroy the parasite at the liver stage, the asexual blood stage, the gametocyte stage, and the insect ookinete stage of the parasite life cycle (i.e., compounds exhibiting multistage activity) are in high demand, preferably with novel and multiple modes of action. Phenotypic screening of chemical libraries against the malaria parasite is certainly a crucial step toward overcoming these crises. In the last few years, various research groups, including industrial research laboratories, have performed large-scale phenotypic screenings that have identified a wealth of chemical entities active against multiple life stages of the malaria parasite. Vital scientific and technological developments have led to the discovery of multistage inhibitors of the malaria parasite; these compounds, considered highly valuable starting points for subsequent drug discovery and eradication of malaria, are reviewed.


Asunto(s)
Antimaláricos/uso terapéutico , Erradicación de la Enfermedad , Estadios del Ciclo de Vida , Malaria/tratamiento farmacológico , Malaria/parasitología , Parásitos/crecimiento & desarrollo , Animales , Antimaláricos/química , Antimaláricos/farmacología , Quimioprevención , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria/prevención & control , Parásitos/efectos de los fármacos
17.
Bioorg Med Chem ; 26(13): 3837-3844, 2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-29983285

RESUMEN

Malaria, particularly in endemic countries remains a threat to the human health and is the leading the cause of mortality in the tropical and sub-tropical areas. Herein, we explored new C2 symmetric hydroxyethylamine analogs as the potential inhibitors of Plasmodium falciparum (P. falciparum; 3D7) in in-vitro cultures. All the listed compounds were also evaluated against crucial drug targets, plasmepsin II (Plm II) and IV (Plm IV), enzymes found in the digestive vacuole of the P. falciparum. Analog 10f showed inhibitory activities against both the enzymes Plm II and Plm IV (Ki, 1.93 ±â€¯0.29 µM for Plm II; Ki, 1.99 ±â€¯0.05 µM for Plm IV). Among all these analogs, compounds 10g selectively inhibited the activity of Plm IV (Ki, 0.84 ±â€¯0.08 µM). In the in vitro screening assay, the growth inhibition of P. falciparum by both the analogs (IC50, 2.27 ±â€¯0.95 µM for 10f; IC50, 3.11 ±â€¯0.65 µM for 10g) displayed marked killing effect. A significant growth inhibition of the P. falciparum was displayed by analog 12c with IC50 value of 1.35 ±â€¯0.85 µM, however, it did not show inhibitory activity against either Plms. The hemolytic assay suggested that the active compounds selectively inhibit the growth of the parasite. Further, potent analogs (10f and 12c) were evaluated for their cytotoxicity towards mammalian HepG2 and vero cells. The selectivity index (SI) values were noticed greater than 10 for both the analogs that suggested their poor toxicity. The present study indicates these analogs as putative lead structures and could serve as crucial for the development of new drug molecules.


Asunto(s)
Antimaláricos/síntesis química , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Etilaminas/química , Animales , Antimaláricos/metabolismo , Antimaláricos/farmacología , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Diseño de Fármacos , Etilaminas/metabolismo , Etilaminas/farmacología , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Células Vero
18.
Bioorg Med Chem ; 23(8): 1817-27, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25766631

RESUMEN

Phthalimides functionalized with cyclic amines were synthesized, characterized and screened for their in vitro antimalarial efficacy against Plasmodium falciparum (Pf3D7). Of all the listed phthalimides evaluated, 14 and 24 were identified as potent antimalarial agents as advocated by assessment of their ability to inhibit [(3)H] hypoxanthine incorporation in the nucleic acid of parasites. In addition, phthalimides 14 and 24 were incubated for 60 and 90h and an enhanced antimalarial effect was noticed with increase in time to great extent. A reduction in IC50 values was observed with increase in exposure time of the parasite to the compounds. A symmetric phthalimide, 24 possessing piperazine as linker unit was identified as the most potent antimalarial agent with IC50 values of 5.97±0.78, 2.0±1.09 and 1.1±0.75µM on incubation period of 42, 60 and 90h, respectively. The abnormal morphologies such as delay in developmental stages, growth arrest and condensed nuclei of parasite were observed with the aid of microscopic studies upon exposure with 14 and 24. The evaluation of 14 and 24 against chloroquine resistant strain, (Pf7GB) of P. falciparum afforded IC50 values, 13.29±1.20 and 7.21±0.98µM, respectively. The combination of 24 with artemisinin (ART) showed enhanced killing of parasite against Pf3D7. Further, all phthalimides were evaluated for their activity against falcipain-2 (FP2), a major hemoglobinase of malarial parasite. The enzymatic assay afforded 6 as most active member against FP2. To the best of our knowledge this is the initial study represents phthalimide protected amino acids functionalized with cyclic amines as potent antimalarial agents.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Cisteína Endopeptidasas/metabolismo , Ftalimidas/química , Ftalimidas/farmacología , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/síntesis química , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/microbiología , Simulación del Acoplamiento Molecular , Ftalimidas/síntesis química , Piperazinas/síntesis química , Piperazinas/química , Piperazinas/farmacología , Plasmodium falciparum/metabolismo
19.
ACS Omega ; 9(4): 4166-4185, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38313515

RESUMEN

Carbon dots (CDs) have drawn attention due to their enticing physical, chemical, and surface properties. Besides, good conductivity, low toxicity, environmental friendliness, simple synthetic routes, and comparable optical properties are advantageous features of CDs. Further, recently, CDs have been explored for biological systems, including plants. Among biological systems, only plants form the basis for sustainability and life on Earth. In this Review, we reviewed suitable properties and applications of CDs, such as promoting the growth of agricultural plants, disease resistance, stress tolerance, and target transportation. Summing up the available studies, we believe that the applications of CDs are yet to be explored significantly for innovation and technology-based agriculture.

20.
J Biomol Struct Dyn ; : 1-11, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686916

RESUMEN

The presence of drug-resistant variants of Plasmodium parasites within the population has presented a substantial obstacle to the eradication of Malaria. As a result, numerous research groups have directed their efforts towards creating new medication candidates that specifically target parasites. In this study, our main objective was to identify tri-peptide inhibitors for Plasmodium falciparum Dihydrofolate Reductase (PfDHFR) with the aim of finding a new peptide that exhibits superior binding properties compared to the current inhibitor, WR99210. In order to achieve this objective, a virtual library consisting of 8000 tripeptides was generated and subjected to computational screening against wild-type PfDHFR. The purpose of this screening was to discover the most effective binders at the active site. The four most optimal tripeptides identified (Trp-Trp-Glu, Trp-Phe-Tyr, Phe-Trp-Trp, Tyr-Trp-Trp) exhibited significant non-covalent interactions inside the active site of PfDHFR and had binding energies ranging from -9.5 to -9.0 kcal/mol and WR99210 had a binding energy of -6.2 kcal/mol. A 250 ns Molecular Dynamics (MD) simulation was performed to investigate the kinetic and thermodynamic characteristics of the protein-ligand complexes. The Root Mean Square Deviation (RMSD) values for the optimal tripeptides fell within the allowed range, indicating the stability of the ligands inside the protein complex. The Ki value for the most effective tripeptide was 0.3482 µM, whereas WR99210 had a Ki value of 1.02 µM. This article presents the initial discovery of peptide inhibitors targeting PfDHFR. In this text, we provide a comprehensive explanation of the interactions that occur between peptides and the enzyme.Communicated by Ramaswamy H. Sarma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA