RESUMEN
The degree of dietary flexibility in primates is species specific; some incorporate a wider array of resources than others. Extreme interannual weather variability in Madagascar results in seasonal resource scarcity which has been linked to specialized behaviors in lemurs. Prolemur simus, for example, has been considered an obligate specialist on large culm bamboo with >60% of its diet composed of woody bamboos requiring morphological and physiological adaptations to process. Recent studies reported an ever-expanding list of dietary items, suggesting that this species may not be an obligate specialist. However, long-term quantitative feeding data are unavailable across this species' range. To explore the dietary flexibility of P. simus, we collected data at two northern sites, Ambalafary and Sahavola, and one southern site, Vatovavy, from September 2010 to January 2016 and May 2017 to September 2018, respectively. In total, we recorded 4022 h of behavioral data using instantaneous sampling of adult males and females from one group in Ambalafary, and two groups each in Sahavola and Vatovavy. We recorded 45 plant species eaten by P. simus over 7 years. We also observed significant differences in seasonal dietary composition between study sites. In Ambalafary, bamboo was the most frequently observed resource consumed (92.2%); however, non-bamboo resources comprised nearly one-third of the diet of P. simus in Sahavola and over 60% in Vatovavy. Consumption of all bamboo resources increased during the dry season at Ambalafary and during the wet season at Vatovavy, but never exceeded non-bamboo feeding at the latter. Culm pith feeding was only observed at Ambalafary, where it was more common during the dry season. We identify P. simus as a bamboo facultative specialist capable of adjusting its feeding behavior to its environment, indicating greater dietary flexibility than previously documented, which may enable the species to survive in increasingly degraded habitats.
Asunto(s)
Lemur , Lemuridae , Femenino , Masculino , Animales , Madagascar , Lemuridae/fisiología , Lemur/fisiología , Conducta Alimentaria/fisiología , Dieta/veterinariaRESUMEN
Tropical ecosystems host a large proportion of global biodiversity and directly support the livelihoods of many of the world's poorest, and often marginalized, people through ecosystem goods and services and conservation employment. The coronavirus pandemic has challenged existing conservation structures and management but provides an opportunity to re-examine strategies and research approaches across the tropics to build resilience for future crises. Based on the personal experiences of conservation leaders, managers, and researchers from Madagascar during this period, we discuss the coping strategies of multiple biodiversity conservation organizations during the coronavirus pandemic. We highlight the vital role of local communities in building and maintaining resilient conservation practices that are robust to global disruptions such as the COVID-19 crisis. We argue that the integration of local experts and communities in conservation, research, and financial decision-making is essential to a strong foundation for biodiversity conservation in developing countries to stand up to future environmental, political, and health crises. This integration could be achieved through the support of training and capacity building of local researchers and community members and these actions would also enhance the development of strong, equitable long-term collaborations with international communities. Equipped with such capacity, conservationists and researchers from these regions could establish long-term biodiversity conservation strategies that are adapted to local context, and communities could flexibly balance biodiversity and livelihood needs as circumstances change, including weathering the isolation and financial challenges of local or global crises.
RESUMEN
To improve our knowledge of the distribution of the critically endangered greater bamboo lemur Prolemur simus, we surveyed 6 sites in eastern Madagascar. We found its characteristic feeding signs at 5 sites and made a direct sighting at one of these. One site represents a northern extension of 45 km of the known extant range of the species. Two sites are located in a forest corridor approximately halfway between the previously known southern and northern populations, therefore suggesting a broadly continuous distribution of the species within its range rather than the previously suspected distribution of two distinct populations separated by a distance of over 200 km. Our results illustrate the benefit of species-focussed surveys in determining the true distribution of endangered species, a realistic measure which is necessary in order to assess their current status and to prioritise long-term conservation interventions.