Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 157(2): 407-419, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725407

RESUMEN

Cell-cell fusion proteins are essential in development. Here we show that the C. elegans cell-cell fusion protein EFF-1 is structurally homologous to viral class II fusion proteins. The 2.6 Å crystal structure of the EFF-1 trimer displays the same 3D fold and quaternary conformation of postfusion class II viral fusion proteins, although it lacks a nonpolar "fusion loop," indicating that it does not insert into the target membrane. EFF-1 was previously shown to be required in both cells for fusion, and we show that blocking EFF-1 trimerization blocks the fusion reaction. Together, these data suggest that whereas membrane fusion driven by viral proteins entails leveraging of a nonpolar loop, EFF-1-driven fusion of cells entails trans-trimerization such that transmembrane segments anchored in the two opposing membranes are brought into contact at the tip of the EFF-1 trimer to then, analogous to SNARE-mediated vesicle fusion, zip the two membranes into one.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Glicoproteínas de Membrana/química , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fusión Celular , Cristalografía por Rayos X , Evolución Molecular , Células Gigantes/metabolismo , Fusión de Membrana , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Polimerizacion , Estructura Terciaria de Proteína , Alineación de Secuencia , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo
2.
Nature ; 555(7697): 475-482, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29539637

RESUMEN

Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.


Asunto(s)
Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/química , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas , Modelos Moleculares , Estabilidad Proteica , Transporte de Proteínas , Transporte de ARN
3.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34453000

RESUMEN

Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity. These input models are 1) converted to a standardized statistical representation relying on probabilistic graphical models, 2) coupled by modeling their mutual relations with the physical world, and 3) finally harmonized with respect to each other. To illustrate Bayesian metamodeling, we provide a proof-of-principle metamodel of glucose-stimulated insulin secretion by human pancreatic ß-cells. The input models include a coarse-grained spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-stimulated insulin secretion signaling; a network model of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell population; and ordinary differential equations for systemic postprandial insulin response. Metamodeling benefits from decentralized computing, while often producing a more accurate, precise, and complete model that contextualizes input models as well as resolves conflicting information. We anticipate Bayesian metamodeling will facilitate collaborative science by providing a framework for sharing expertise, resources, data, and models, as exemplified by the Pancreatic ß-Cell Consortium.


Asunto(s)
Modelos Biológicos , Teorema de Bayes , Simulación por Computador , Humanos , Modelos Lineales
4.
Proc Natl Acad Sci U S A ; 116(2): 566-574, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30587587

RESUMEN

We report a patient who presented with congenital hypotonia, hypoventilation, and cerebellar histopathological alterations. Exome analysis revealed a homozygous mutation in the initiation codon of the NME3 gene, which encodes an NDP kinase. The initiation-codon mutation leads to deficiency in NME3 protein expression. NME3 is a mitochondrial outer-membrane protein capable of interacting with MFN1/2, and its depletion causes dysfunction in mitochondrial dynamics. Consistently, the patient's fibroblasts were characterized by a slow rate of mitochondrial dynamics, which was reversed by expression of wild-type or catalytic-dead NME3. Moreover, glucose starvation caused mitochondrial fragmentation and cell death in the patient's cells. The expression of wild-type and catalytic-dead but not oligomerization-attenuated NME3 restored mitochondrial elongation. However, only wild-type NME3 sustained ATP production and viability. Thus, the separate functions of NME3 in mitochondrial fusion and NDP kinase cooperate in metabolic adaptation for cell survival in response to glucose starvation. Given the critical role of mitochondrial dynamics and energy requirements in neuronal development, the homozygous mutation in NME3 is linked to a fatal mitochondrial neurodegenerative disorder.


Asunto(s)
Adenosina Trifosfato , Metabolismo Energético/genética , Homocigoto , Dinámicas Mitocondriales/genética , Nucleósido Difosfato Quinasas NM23 , Enfermedades Neurodegenerativas , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Línea Celular , Supervivencia Celular , Femenino , Humanos , Masculino , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/patología , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología
5.
Proc Natl Acad Sci U S A ; 113(18): E2489-97, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27091992

RESUMEN

Nucleocytoplasmic transport is mediated by the interaction of transport factors (TFs) with disordered phenylalanine-glycine (FG) repeats that fill the central channel of the nuclear pore complex (NPC). However, the mechanism by which TFs rapidly diffuse through multiple FG repeats without compromising NPC selectivity is not yet fully understood. In this study, we build on our recent NMR investigations showing that FG repeats are highly dynamic, flexible, and rapidly exchanging among TF interaction sites. We use unbiased long timescale all-atom simulations on the Anton supercomputer, combined with extensive enhanced sampling simulations and NMR experiments, to characterize the thermodynamic and kinetic properties of FG repeats and their interaction with a model transport factor. Both the simulations and experimental data indicate that FG repeats are highly dynamic random coils, lack intrachain interactions, and exhibit significant entropically driven resistance to spatial confinement. We show that the FG motifs reversibly slide in and out of multiple TF interaction sites, transitioning rapidly between a strongly interacting state and a weakly interacting state, rather than undergoing a much slower transition between strongly interacting and completely noninteracting (unbound) states. In the weakly interacting state, FG motifs can be more easily displaced by other competing FG motifs, providing a simple mechanism for rapid exchange of TF/FG motif contacts during transport. This slide-and-exchange mechanism highlights the direct role of the disorder within FG repeats in nucleocytoplasmic transport, and resolves the apparent conflict between the selectivity and speed of transport.


Asunto(s)
Transporte Activo de Núcleo Celular , Glicina/química , Simulación de Dinámica Molecular , Poro Nuclear/química , Poro Nuclear/ultraestructura , Fenilalanina/química , Sitios de Unión , Simulación por Computador , Modelos Biológicos , Modelos Químicos , Unión Proteica , Conformación Proteica , Dominios Proteicos , Secuencias Repetitivas de Aminoácido
6.
bioRxiv ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38260487

RESUMEN

The Nuclear Pore Complex (NPC) facilitates rapid and selective nucleocytoplasmic transport of molecules as large as ribosomal subunits and viral capsids. It is not clear how key emergent properties of this transport arise from the system components and their interactions. To address this question, we constructed an integrative coarse-grained Brownian dynamics model of transport through a single NPC, followed by coupling it with a kinetic model of Ran-dependent transport in an entire cell. The microscopic model parameters were fitted to reflect experimental data and theoretical information regarding the transport, without making any assumptions about its emergent properties. The resulting reductionist model is validated by reproducing several features of transport not used for its construction, such as the morphology of the central transporter, rates of passive and facilitated diffusion as a function of size and valency, in situ radial distributions of pre-ribosomal subunits, and active transport rates for viral capsids. The model suggests that the NPC functions essentially as a virtual gate whose flexible phenylalanine-glycine (FG) repeat proteins raise an entropy barrier to diffusion through the pore. Importantly, this core functionality is greatly enhanced by several key design features, including 'fuzzy' and transient interactions, multivalency, redundancy in the copy number of FG nucleoporins, exponential coupling of transport kinetics and thermodynamics in accordance with the transition state theory, and coupling to the energy-reliant RanGTP concentration gradient. These design features result in the robust and resilient rate and selectivity of transport for a wide array of cargo ranging from a few kilodaltons to megadaltons in size. By dissecting these features, our model provides a quantitative starting point for rationally modulating the transport system and its artificial mimics.

7.
Nucleic Acids Res ; 39(Web Server issue): W249-53, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21622962

RESUMEN

Peptide-protein interactions are among the most prevalent and important interactions in the cell, but a large fraction of those interactions lack detailed structural characterization. The Rosetta FlexPepDock web server (http://flexpepdock.furmanlab.cs.huji.ac.il/) provides an interface to a high-resolution peptide docking (refinement) protocol for the modeling of peptide-protein complexes, implemented within the Rosetta framework. Given a protein receptor structure and an approximate, possibly inaccurate model of the peptide within the receptor binding site, the FlexPepDock server refines the peptide to high resolution, allowing full flexibility to the peptide backbone and to all side chains. This protocol was extensively tested and benchmarked on a wide array of non-redundant peptide-protein complexes, and was proven effective when applied to peptide starting conformations within 5.5 Å backbone root mean square deviation from the native conformation. FlexPepDock has been applied to several systems that are mediated and regulated by peptide-protein interactions. This easy to use and general web server interface allows non-expert users to accurately model their specific peptide-protein interaction of interest.


Asunto(s)
Péptidos/química , Mapeo de Interacción de Proteínas , Proteínas/química , Programas Informáticos , Sitios de Unión , Internet , Modelos Moleculares
8.
bioRxiv ; 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37066338

RESUMEN

Nuclear pore complexes (NPCs) mediate nucleocytoplasmic transport of specific macromolecules while impeding the exchange of unsolicited material. However, key aspects of this gating mechanism remain controversial. To address this issue, we determined the nanoscopic behavior of the permeability barrier directly within yeast S. cerevisiae NPCs at transport-relevant timescales. We show that the large intrinsically disordered domains of phenylalanine-glycine repeat nucleoporins (FG Nups) exhibit highly dynamic fluctuations to create transient voids in the permeability barrier that continuously shape-shift and reseal, resembling a radial polymer brush. Together with cargo-carrying transport factors the FG domains form a feature called the central plug, which is also highly dynamic. Remarkably, NPC mutants with longer FG domains show interweaving meshwork-like behavior that attenuates nucleocytoplasmic transport in vivo. Importantly, the bona fide nanoscale NPC behaviors and morphologies are not recapitulated by in vitro FG domain hydrogels. NPCs also exclude self-assembling FG domain condensates in vivo, thereby indicating that the permeability barrier is not generated by a self-assembling phase condensate, but rather is largely a polymer brush, organized by the NPC scaffold, whose dynamic gating selectivity is strongly enhanced by the presence of transport factors.

9.
J Biol Chem ; 286(4): 2607-16, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21071445

RESUMEN

Dictyostelium discoideum myosin II heavy chain kinase A (MHCK A), a member of the atypical α-kinase family, phosphorylates sites in the myosin II tail that block filament assembly. Here we show that the catalytic activity of A-CAT, the α-kinase domain of MHCK A (residues 552-841), is severely inhibited by the removal of a disordered C-terminal tail sequence (C-tail; residues 806-841). The key residue in the C-tail was identified as Thr(825), which was found to be constitutively autophosphorylated. Dephosphorylation of Thr(825) using shrimp alkaline phosphatase decreased A-CAT activity. The activity of a truncated A-CAT lacking Thr(825) could be rescued by P(i), phosphothreonine, and a phosphorylated peptide, but not by threonine, glutamic acid, aspartic acid, or an unphosphorylated peptide. These results focused attention on a P(i)-binding pocket located in the C-terminal lobe of A-CAT. Mutational analysis demonstrated that the P(i)-pocket was essential for A-CAT activity. Based on these results, it is proposed that autophosphorylation of Thr(825) activates ACAT by providing a covalently tethered ligand for the P(i)-pocket. Ab initio modeling studies using the Rosetta FloppyTail and FlexPepDock protocols showed that it is feasible for the phosphorylated Thr(825) to dock intramolecularly into the P(i)-pocket. Allosteric activation is predicted to involve a conformational change in Arg(734), which bridges the bound P(i) to Asp(762) in a key active site loop. Sequence alignments indicate that a comparable regulatory mechanism is likely to be conserved in Dictyostelium MHCK B-D and metazoan eukaryotic elongation factor-2 kinases.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Dictyostelium/enzimología , Proteínas Protozoarias/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Dictyostelium/genética , Activación Enzimática/fisiología , Mutación , Fosforilación/fisiología , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética
10.
Nat Cell Biol ; 24(6): 896-905, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35681009

RESUMEN

Mechanical force controls fundamental cellular processes in health and disease, and increasing evidence shows that the nucleus both experiences and senses applied forces. Such forces can lead to the nuclear translocation of proteins, but whether force controls nucleocytoplasmic transport, and how, remains unknown. Here we show that nuclear forces differentially control passive and facilitated nucleocytoplasmic transport, setting the rules for the mechanosensitivity of shuttling proteins. We demonstrate that nuclear force increases permeability across nuclear pore complexes, with a dependence on molecular weight that is stronger for passive than for facilitated diffusion. Owing to this differential effect, force leads to the translocation of cargoes into or out of the nucleus within a given range of molecular weight and affinity for nuclear transport receptors. Further, we show that the mechanosensitivity of several transcriptional regulators can be both explained by this mechanism and engineered exogenously by introducing appropriate nuclear localization signals. Our work unveils a mechanism of mechanically induced signalling, probably operating in parallel with others, with potential applicability across signalling pathways.


Asunto(s)
Núcleo Celular , Poro Nuclear , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo
11.
Curr Alzheimer Res ; 19(10): 694-707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278440

RESUMEN

BACKGROUND: The clinical characteristics of symptomatic and asymptomatic carriers of early- onset autosomal dominant Alzheimer's (EOADAD) due to a yet-undescribed chromosomal rearrangement may add to the available body of knowledge about Alzheimer's disease and may enlighten novel and modifier genes. We report the clinical and genetic characteristics of asymptomatic and symptomatic individuals carrying a novel APP duplication rearrangement. METHODS: Individuals belonging to a seven-generation pedigree with familial cognitive decline or intracerebral hemorrhages were recruited. Participants underwent medical, neurological, and neuropsychological evaluations. The genetic analysis included chromosomal microarray, Karyotype, fluorescence in situ hybridization, and whole genome sequencing. RESULTS: Of 68 individuals, six females presented with dementia, and four males presented with intracerebral hemorrhage. Of these, nine were found to carry Chromosome 21 copy number gain (chr21:27,224,097-27,871,284, GRCh37/hg19) including the APP locus (APP-dup). In seven, Chromosome 5 copy number gain (Chr5: 24,786,234-29,446,070, GRCh37/hg19) (Chr5-CNG) cosegregated with the APP-dup. Both duplications co-localized to chromosome 18q21.1 and segregated in 25 pre-symptomatic carriers. Compared to non-carriers, asymptomatic carriers manifested cognitive decline in their mid-thirties. A third of the affected individuals carried a diagnosis of a dis-immune condition. CONCLUSION: APP extra dosage, even in isolation and when located outside chromosome 21, is pathogenic. The clinical presentation of APP duplication varies and may be gender specific, i.e., ICH in males and cognitive-behavioral deterioration in females. The association with immune disorders is presently unclear but may prove relevant. The implication of Chr5-CNG co-segregation and the surrounding chromosome 18 genetic sequence needs further clarification.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Masculino , Femenino , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico , Estudios Transversales , Hibridación Fluorescente in Situ , Linaje
12.
Biochemistry ; 49(51): 10890-901, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21105670

RESUMEN

Glycogen synthase kinase 3ß (GSK-3ß) is a serine-threonine kinase belonging to the CMGC family that plays a key role in many biological processes, such as glucose metabolism, cell cycle regulation, and proliferation. Like most protein kinases, GSK-3ß is regulated via multiple pathways and sites. We performed all-atom molecular dynamics simulations on the unphosphorylated and phosphorylated unbound GSK-3ß and the phosphorylated GSK-3ß bound to a peptide substrate, its product, and a derived inhibitor. We found that GSK-3ß autophosphorylation at residue Tyr(216) results in widening of the catalytic groove, thereby facilitating substrate access. In addition, we studied the interactions of the phosphorylated GSK-3ß with a substrate and peptide inhibitor located at the active site and observed higher affinity of the inhibitor to the kinase. Furthermore, we detected a potential remote binding site which was previously identified in other kinases. In agreement with experiments we observed that binding of specific peptides at this remote site leads to stabilization of the activation loop located in the active site. We speculate that this stabilization could enhance the catalytic activity of the kinase. We point to this remote site as being structurally conserved and suggest that the allosteric phenomenon observed here may occur in the protein kinase superfamily.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Regulación Alostérica , Sitios de Unión , Glucógeno Sintasa Quinasa 3/química , Glucógeno Sintasa Quinasa 3 beta , Humanos , Ligandos , Simulación de Dinámica Molecular , Péptidos/metabolismo , Conformación Proteica
13.
Proteins ; 78(9): 2029-40, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20455260

RESUMEN

A wide range of regulatory processes in the cell are mediated by flexible peptides that fold upon binding to globular proteins. Computational efforts to model these interactions are hindered by the large number of rotatable bonds in flexible peptides relative to typical ligand molecules, and the fact that different peptides assume different backbone conformations within the same binding site. In this study, we present Rosetta FlexPepDock, a novel tool for refining coarse peptide-protein models that allows significant changes in both peptide backbone and side chains. We obtain high resolution models, often of sub-angstrom backbone quality, over an extensive and general benchmark that is based on a large nonredundant dataset of 89 peptide-protein interactions. Importantly, side chains of known binding motifs are modeled particularly well, typically with atomic accuracy. In addition, our protocol has improved modeling quality for the important application of cross docking to PDZ domains. We anticipate that the ability to create high resolution models for a wide range of peptide-protein complexes will have significant impact on structure-based functional characterization, controlled manipulation of peptide interactions, and on peptide-based drug design.


Asunto(s)
Simulación de Dinámica Molecular , Mapeo de Interacción de Proteínas/métodos , Proteínas/química , Programas Informáticos , Proteínas de la Cápside/química , Bases de Datos de Proteínas , VIH , Método de Montecarlo , Complejos Multiproteicos/química , Dominios PDZ , Péptidos/química
14.
Proteins ; 78(15): 3140-9, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20607702

RESUMEN

In this study, we assess on a large scale the possibility of deriving self-inhibitory peptides from protein domains with globular architectures. Such inhibitory peptides would inhibit interactions of their origin domain by mimicking its mode of binding to cognate partners, and could serve as promising leads for rational design of inhibitory drugs. For our large-scale analysis, we analyzed short linear segments that were cut out of protein interfaces in silico in complex structures of protein-protein docking Benchmark 3.0 and CAPRI targets from rounds 1-19. Our results suggest that more than 50% of these globular interactions are dominated by one short linear segment at the domain interface, which provides more than half of the original interaction energy. Importantly, in many cases the derived peptides show strong energetic preference for their original binding mode independently of the context of their original domain, as we demonstrate by extensive computational peptide docking experiments. As an in depth case study, we computationally design a candidate peptide to inhibit the EphB4-EphrinB2 interaction based on a short peptide derived from the G-H loop in EphrinB2. Altogether, we provide an elaborate framework for the in silico selection of candidate inhibitory molecules for protein-protein interactions. Such candidate molecules can be readily subjected to wet-laboratory experiments and provide highly promising starting points for subsequent drug design.


Asunto(s)
Modelos Químicos , Péptidos/química , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Animales , Sitios de Unión , Simulación por Computador , Humanos , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Programas Informáticos , Termodinámica
15.
PLoS Comput Biol ; 5(2): e1000295, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19247429

RESUMEN

Proteins are active, flexible machines that perform a range of different functions. Innovative experimental approaches may now provide limited partial information about conformational changes along motion pathways of proteins. There is therefore a need for computational approaches that can efficiently incorporate prior information into motion prediction schemes. In this paper, we present PathRover, a general setup designed for the integration of prior information into the motion planning algorithm of rapidly exploring random trees (RRT). Each suggested motion pathway comprises a sequence of low-energy clash-free conformations that satisfy an arbitrary number of prior information constraints. These constraints can be derived from experimental data or from expert intuition about the motion. The incorporation of prior information is very straightforward and significantly narrows down the vast search in the typically high-dimensional conformational space, leading to dramatic reduction in running time. To allow the use of state-of-the-art energy functions and conformational sampling, we have integrated this framework into Rosetta, an accurate protocol for diverse types of structural modeling. The suggested framework can serve as an effective complementary tool for molecular dynamics, Normal Mode Analysis, and other prevalent techniques for predicting motion in proteins. We applied our framework to three different model systems. We show that a limited set of experimentally motivated constraints may effectively bias the simulations toward diverse predicates in an outright fashion, from distance constraints to enforcement of loop closure. In particular, our analysis sheds light on mechanisms of protein domain swapping and on the role of different residues in the motion.


Asunto(s)
Proteínas/química , Programas Informáticos , Conformación Proteica
16.
Biophys J ; 95(8): 3850-60, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18621834

RESUMEN

We present a general framework for the generation, alignment, comparison, and hybridization of motion pathways between two known protein conformations. The framework, which is rooted in probabilistic motion-planning techniques in robotics, allows for the efficient generation of collision-free motion pathways, while considering a wide range of degrees of freedom involved in the motion. Within the framework, we provide the means to hybridize pathways, thus producing, the motion pathway of the lowest energy barrier out of the many pathways proposed by our algorithm. This method for comparing and hybridizing pathways is modular, and may be used within the context of molecular dynamics and Monte Carlo simulations. The framework was implemented within the Rosetta software suite, where the protein is represented in atomic detail. The K-channels switch between open and closed conformations, and we used the overall framework to investigate this transition. Our analysis suggests that channel-opening may follow a three-phase pathway. First, the channel unlocks itself from the closed state; second, it opens; and third, it locks itself in the open conformation. A movie that depicts the proposed pathway is available in the Supplementary Material (Movie S1) and at http://www.cs.tau.ac.il/~angela/SuppKcsA.html.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Activación del Canal Iónico , Canales de Potasio/química , Canales de Potasio/metabolismo , Algoritmos , Estructura Secundaria de Proteína
17.
Proteins ; 70(1): 208-17, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17657805

RESUMEN

Metal ions are crucial for protein function. They participate in enzyme catalysis, play regulatory roles, and help maintain protein structure. Current tools for predicting metal-protein interactions are based on proteins crystallized with their metal ions present (holo forms). However, a majority of resolved structures are free of metal ions (apo forms). Moreover, metal binding is a dynamic process, often involving conformational rearrangement of the binding pocket. Thus, effective predictions need to be based on the structure of the apo state. Here, we report an approach that identifies transition metal-binding sites in apo forms with a resulting selectivity >95%. Applying the approach to apo forms in the Protein Data Bank and structural genomics initiative identifies a large number of previously unknown, putative metal-binding sites, and their amino acid residues, in some cases providing a first clue to the function of the protein.


Asunto(s)
Apoproteínas/metabolismo , Metales/metabolismo , Apoproteínas/química , Sitios de Unión , Conformación Proteica
18.
Bioinformatics ; 23(2): e163-9, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17237086

RESUMEN

MOTIVATION: Secondary structures are key descriptors of a protein fold and its topology. In recent years, they facilitated intensive computational tasks for finding structural homologues, fold prediction and protein design. Their popularity stems from an appealing regularity in patterns of geometry and chemistry. However, the definition of secondary structures is of subjective nature. An unsupervised de-novo discovery of these structures would shed light on their nature, and improve the way we use these structures in algorithms of structural bioinformatics. METHODS: We developed a new method for unsupervised partitioning of undirected graphs, based on patterns of small recurring network motifs. Our input was the network of all H-bonds and covalent interactions of protein backbones. This method can be also used for other biological and non-biological networks. RESULTS: In a fully unsupervised manner, and without assuming any explicit prior knowledge, we were able to rediscover the existence of conventional alpha-helices, parallel beta-sheets, anti-parallel sheets and loops, as well as various non-conventional hybrid structures. The relation between connectivity and crystallographic temperature factors establishes the existence of novel secondary structures.


Asunto(s)
Inteligencia Artificial , Modelos Químicos , Modelos Moleculares , Reconocimiento de Normas Patrones Automatizadas/métodos , Proteínas/química , Proteínas/ultraestructura , Análisis de Secuencia de Proteína/métodos , Algoritmos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Análisis por Conglomerados , Simulación por Computador , Datos de Secuencia Molecular
19.
Sci Signal ; 10(471)2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28325822

RESUMEN

Chemokines orchestrate cell migration for development, immune surveillance, and disease by binding to cell surface heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). The array of interactions between the nearly 50 chemokines and their 20 GPCR targets generates an extensive signaling network to which promiscuity and biased agonism add further complexity. The receptor CXCR4 recognizes both monomeric and dimeric forms of the chemokine CXCL12, which is a distinct example of ligand bias in the chemokine family. We demonstrated that a constitutively monomeric CXCL12 variant reproduced the G protein-dependent and ß-arrestin-dependent responses that are associated with normal CXCR4 signaling and lead to cell migration. In addition, monomeric CXCL12 made specific contacts with CXCR4 that are not present in the structure of the receptor in complex with a dimeric form of CXCL12, a biased agonist that stimulates only G protein-dependent signaling. We produced an experimentally validated model of an agonist-bound chemokine receptor that merged a nuclear magnetic resonance-based structure of monomeric CXCL12 bound to the amino terminus of CXCR4 with a crystal structure of the transmembrane domains of CXCR4. The large CXCL12:CXCR4 protein-protein interface revealed by this structure identified previously uncharacterized functional interactions that fall outside of the classical "two-site model" for chemokine-receptor recognition. Our model suggests a mechanistic hypothesis for how interactions on the extracellular face of the receptor may stimulate the conformational changes required for chemokine receptor-mediated signal transduction.


Asunto(s)
Quimiocina CXCL12/química , Multimerización de Proteína , Receptores CXCR4/química , Transducción de Señal , Secuencia de Aminoácidos , Línea Celular Tumoral , Movimiento Celular/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Células HEK293 , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación , Unión Proteica , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Arrestina beta 2/genética , Arrestina beta 2/metabolismo
20.
J Cell Biol ; 215(1): 57-76, 2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27697925

RESUMEN

Passive macromolecular diffusion through nuclear pore complexes (NPCs) is thought to decrease dramatically beyond a 30-60-kD size threshold. Using thousands of independent time-resolved fluorescence microscopy measurements in vivo, we show that the NPC lacks such a firm size threshold; instead, it forms a soft barrier to passive diffusion that intensifies gradually with increasing molecular mass in both the wild-type and mutant strains with various subsets of phenylalanine-glycine (FG) domains and different levels of baseline passive permeability. Brownian dynamics simulations replicate these findings and indicate that the soft barrier results from the highly dynamic FG repeat domains and the diffusing macromolecules mutually constraining and competing for available volume in the interior of the NPC, setting up entropic repulsion forces. We found that FG domains with exceptionally high net charge and low hydropathy near the cytoplasmic end of the central channel contribute more strongly to obstruction of passive diffusion than to facilitated transport, revealing a compartmentalized functional arrangement within the NPC.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Simulación por Computador , Difusión , Recuperación de Fluorescencia tras Fotoblanqueo , Cinética , Sustancias Macromoleculares/metabolismo , Peso Molecular , Mutación/genética , Poro Nuclear/metabolismo , Permeabilidad , Dominios Proteicos , Especificidad por Sustrato , Termodinámica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA