RESUMEN
Despite numerous studies suggesting that amphibians are highly sensitive to endocrine disruptors (EDs), both their role in the decline of populations and the underlying mechanisms remain unclear. This study showed that frogs exposed throughout their life cycle to ED concentrations low enough to be considered safe for drinking water, developed a prediabetes phenotype and, more commonly, a metabolic syndrome. Female Xenopus tropicalis exposed from tadpole stage to benzo(a)pyrene or triclosan at concentrations of 50 ngâ L-1 displayed glucose intolerance syndrome, liver steatosis, liver mitochondrial dysfunction, liver transcriptomic signature, and pancreatic insulin hypersecretion, all typical of a prediabetes state. This metabolic syndrome led to progeny whose metamorphosis was delayed and occurred while the individuals were both smaller and lighter, all factors that have been linked to reduced adult recruitment and likelihood of reproduction. We found that F1 animals did indeed have reduced reproductive success, demonstrating a lower fitness in ED-exposed Xenopus Moreover, after 1 year of depuration, Xenopus that had been exposed to benzo(a)pyrene still displayed hepatic disorders and a marked insulin secretory defect resulting in glucose intolerance. Our results demonstrate that amphibians are highly sensitive to EDs at concentrations well below the thresholds reported to induce stress in other vertebrates. This study introduces EDs as a possible key contributing factor to amphibian population decline through metabolism disruption. Overall, our results show that EDs cause metabolic disorders, which is in agreement with epidemiological studies suggesting that environmental EDs might be one of the principal causes of metabolic disease in humans.
Asunto(s)
Benzo(a)pireno/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Extinción Biológica , Intolerancia a la Glucosa , Triclosán/toxicidad , Xenopus/metabolismo , Animales , Femenino , Intolerancia a la Glucosa/inducido químicamente , Intolerancia a la Glucosa/metabolismo , Larva/metabolismo , Metamorfosis Biológica/efectos de los fármacosRESUMEN
BACKGROUND: Despite numerous studies suggesting that amphibians are highly sensitive to cumulative anthropogenic stresses, the role pollutants play in the decline of amphibian populations remains unclear. Amongst the most common aquatic contaminants, polycyclic aromatic hydrocarbons (PAHs) have been shown to induce several adverse effects on amphibian species in the larval stages. Conversely, adults exposed to high concentrations of the ubiquitous PAH, benzo[a]pyrene (BaP), tolerate the compound thanks to their highly efficient hepatic detoxification mechanisms. Due to this apparent lack of toxic effect on adults, no studies have examined in depth the potential toxicological impact of PAH on the physiology of adult amphibian livers. This study sheds light on the hepatic responses of Xenopus tropicalis when exposed to high environmentally relevant concentrations of BaP, by combining a high throughput transcriptomic approach (mRNA deep sequencing) and a characterization of cellular and physiological modifications to the amphibian liver. RESULTS: Transcriptomic changes observed in BaP-exposed Xenopus were further characterized using a time-dependent enrichment analysis, which revealed the pollutant-dependent gene regulation of important biochemical pathways, such as cholesterol biosynthesis, insulin signaling, adipocytokines signaling, glycolysis/gluconeogenesis and MAPK signaling. These results were substantiated at the physiological level with the detection of a pronounced metabolic disorder resulting in a possible insulin resistance-like syndrome phenotype. Hepatotoxicity induced by lipid and cholesterol metabolism impairments was clearly identified in BaP-exposed individuals. CONCLUSIONS: Our data suggested that BaP may disrupt overall liver physiology, and carbohydrate and cholesterol metabolism in particular, even after short-term exposure. These results are further discussed in terms of how this deregulation of liver physiology can lead to general metabolic impairment in amphibians chronically exposed to contaminants, thereby illustrating the role xenobiotics might play in the global decline in amphibian populations.
Asunto(s)
Benzo(a)pireno/toxicidad , Contaminantes Ambientales/toxicidad , Perfilación de la Expresión Génica , Hígado/efectos de los fármacos , Hígado/metabolismo , Animales , Apoptosis/efectos de los fármacos , Benzo(a)pireno/metabolismo , Transporte Biológico , Comunicación Celular/efectos de los fármacos , Comunicación Celular/genética , Relación Dosis-Respuesta a Droga , Ambiente , Contaminantes Ambientales/metabolismo , Femenino , Glucosa/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Cinética , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Hígado/citología , Hígado/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Esteroides/biosíntesis , XenopusRESUMEN
This study investigated the impacts of an organochlorine (OC, γ-hexachlorocyclohexane and chlorobenzenes) mixture on microbial communities associated to Phragmites australis rhizosphere. Seventy-eight distinct colony morphotypes were isolated, cultivated and analysed by 16S rDNA sequence analysis. Toxicity tests confirmed sensitivity (e.g. Hevizibacter, Acidovorax) or tolerance (e.g. Bacillus, Aeromonas, Pseudomonas, Sphingomonas) of isolates. Rhizosphere analysis by pyrosequencing showed the microbial adaptation induced by OC exposure. Among the most abundant molecular operational taxonomic units, 80 % appeared to be tolerant (55 % opportunist, 25 % unaffected) and 20 % sensitive. P. australis rhizosphere exposed to OCs was dominated by phylotypes related to α-, ß- and γ-Proteobacteria. Specific genera were identified which were previously described as chlorinated organic pollutant degraders: Sphingomonas sp., Pseudomonas sp., Devosia sp. and Sphingobium sp. P. australis could be suitable plants to maintain their rhizosphere active microbial population which can tolerate OCs and potentially improve the OC remediation process in part by biodegradation.
Asunto(s)
Bacterias/efectos de los fármacos , Biota/efectos de los fármacos , Hidrocarburos Clorados/metabolismo , Poaceae/crecimiento & desarrollo , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Bacterias/clasificación , Bacterias/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , Plantas , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
A 7-day-exposure time experiment was designed to investigate the phytotoxicity of chlorobenzenes (CBs) on Zea mays seedlings, focusing on the growth and generation of oxidative stress. Significant growth inhibition (based on biomass gain) was observed for exposure to monochlorobenzene (MCB), dichlorobenzene (DCB) and trichlorobenzene (TCB) concentrations higher than 10 mg l(-1). It would seem that CBs inhibit cell division, since the mitotic index decreased for roots exposed to DCB at 80 mg l(-1) dose (8%) and to all the TCB concentrations tested (20% inhibition). CBs exposure resulting in an increase in the oxidative stress response in maize seedlings [reactive oxygen species like H(2)O(2), antioxidant enzymes (POD, GR), lipid peroxidation] correlated to the compound's degree of chlorination, where damage increasing with the number of chlorine atoms (MCB < DCB < TCB). This biological response was also dependent on the dose-exposure. Z. mays exposed to CBs at concentrations <10 mg l(-1) did not induce sufficient oxidative damage to cause root cell death. Therefore, CBs at current environmental concentrations are unlikely to produce evident phytotoxic effects on Z. mays seedlings.
Asunto(s)
Clorobencenos/toxicidad , Plantones/efectos de los fármacos , Zea mays/efectos de los fármacos , División Celular/efectos de los fármacos , Clorobencenos/química , Relación Dosis-Respuesta a Droga , Glutatión Reductasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Relación Estructura-Actividad Cuantitativa , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Pruebas de Toxicidad , Zea mays/fisiologíaRESUMEN
A pre-diabetes syndrome induced by endocrine disruptors (ED) was recently demonstrated in the model amphibian Silurana (Xenopus) tropicalis and was suggested to be a potential cause of amphibian population decline. However, such effects have not been found in wild type frogs exposed to ED and the capacity of amphibians to physiologically develop diabetes under natural conditions has not been confirmed. This study showed that a high fat diet (HFD) model displaying the important characteristics of mammal HFD models including glucose intolerance, insulin resistance and nonalcoholic fatty liver disease (NAFLD) can be developed with green frogs (Pelophylax spp.). Wild green frogs exposed to 10 µg L-1 benzo [a]pyrene (BaP) for 18 h also displayed several characteristics of the pre-diabetes phenotype previously observed in Xenopus including glucose intolerance, gluconeogenesis activation and insulin resistance. The study results confirmed that metabolic disorders induced by ED in wild green frogs are typical of the pre-diabetes phenotype and could serve as a starting point for field studies to determine the role of ED in the decline of amphibian populations. From an environmental perspective, the response of wild green frogs to different ED (10 µg L-1) suggests that a simple glucose-tolerance test could be used on wild anurans to identify bodies of water polluted with metabolic disruptors that could affect species fitness.
Asunto(s)
Disruptores Endocrinos , Intolerancia a la Glucosa , Resistencia a la Insulina , Síndrome Metabólico , Estado Prediabético , Rana clamitans , Animales , Benzo(a)pireno , Dieta Alta en Grasa/efectos adversos , Disruptores Endocrinos/toxicidad , Mamíferos , Síndrome Metabólico/inducido químicamente , RanidaeRESUMEN
Animals must partition limited resources between their own growth and subsequent reproduction. Endocrine disruptors (ED) may cause maternal metabolic disorders that decrease successful reproduction and might be responsible for multi- and transgenerational effects in amphibians. We found that the frog Silurana (Xenopus) tropicalis, exposed to environmentally relevant concentrations of benzo[a]pyrene and triclosan throughout its life cycle, produced F1 females with delayed sexual maturity and decreased size and weight. These F1 females displayed a marked metabolic syndrome associated with decreased fasting plasma cholesterol and triglyceride concentrations and decreased gonadal development. F1 females from F0 exposed animals also had decreased reproductive investment highlighted by a decrease of oocyte lipid reserves associated with significant F2-tadpole mortality. F2 females from F0 exposed animals also displayed a marked metabolic syndrome but were able to correctly direct liver lipid metabolism to the constitution of fat bodies and oocyte yolk stores. In addition, the F2 females produced progeny that had normal mortality levels at 5 days post hatching compared to the controls suggesting a good reproductive investment. Our data confirmed that these ED, at concentrations often found in natural ponds, can induce multi- and transgenerational metabolic disorders in the progeny of amphibians that are not directly exposed. We present a hypothesis to explain the transmission of the metabolic syndrome across generations through modification of egg reserves. However, when high mortality occurred at the tadpole stage, surviving females were able to cope with metabolic costs and produce viable progeny through sufficient investment in the contents of oocyte reserves.
Asunto(s)
Enfermedades Metabólicas , Triclosán , Animales , Benzo(a)pireno/toxicidad , Femenino , Enfermedades Metabólicas/inducido químicamente , Reproducción , Triclosán/toxicidad , Xenopus laevisRESUMEN
Polychlorinated biphenyls (PCBs) are organic pollutants that are harmful to environment and toxic to humans. Numerous studies, based on basidiomycete strains, have reported unsatisfactory results in the mycoremediation of PCB-contaminated soils mainly due to the non-telluric origin of these strains. The abilities of a five-Ascomycete-strain consortium in the mycoremediation of PCB-polluted soils and its performance to restore their sound functioning were investigated using mesocosm experiments associated with chromatography gas analysis and enzymatic activity assays. With the soil H containing 850 ppm PCB from which the strains had been isolated, a significant PCB depletion of 29% after three months of treatment was obtained. This led to an important decrease of PCBs from 850 to 604 ppm. With the soil L containing 36 ppm PCB, biodegradation did not occur. In both soils, the fungal biomass quantified by the ergosterol assay, did not increase at the end of the treatment. Biodegradation evidenced in the soil H resulted in a significantly improved stoichiometry of N and P acquiring enzymatic activities. This unprecedented study demonstrates that the native Ascomycetes display remarkable properties for remediation and restoration of functioning of the soil they originated from paving the way for greater consideration of these strains in mycoremediation.
RESUMEN
Polychlorinated biphenyls (PCBs) belong to the organic pollutants that are toxic to humans and harmful to environments. Numerous studies dealing with the impact of PCBs on soil microorganisms have focused on bacterial communities. The effects of PCBs on fungal communities in three different PCB-polluted soils from former industrial sites were investigated using high-throughput sequencing of the internal transcribed spacer 1 region. Significant differences in fungal alpha diversity were observed mainly due to soil physico-chemical properties. PCBs only influenced the richness of the fungal communities by increasing it. Fungal composition was rather strongly influenced by both PCBs and soil properties, resulting in different communities associated with each soil. Sixteen Ascomycota species were present in all three soils, including Stachybotrys chartarum, Fusarium oxysporum, Penicillium canescens, Penicillium chrysogenum,Penicillium citrosulfuratum and Penicillium brevicompactum, which are usually found in PCB-polluted soils, and Fusarium solani, Penicillium canescens, Penicillium citrosulfuratum and Penicillium chrysogenum, which are known PCB degraders. This study demonstrated that PCBs influence the richness and the composition of fungal communities. Their influence, associated with that of soil physico-chemical properties, led to distinct fungal communities, but with sixteen species common to the three soils which could be considered as ubiquitous species in PCB-polluted soils.
RESUMEN
Metabolic disorders induced by endocrine disruptors (ED) may contribute to amphibian population declines but no transgenerational studies have evaluated this hypothesis. Here we show that Xenopus tropicalis, exposed from the tadpole stage, to the ED benzo[a]pyrene (BaP, 50 ng.L-1) produced F2 progeny with delayed metamorphosis and sexual maturity. At the adult stage, F2-BaP females displayed fatty liver with inflammation, tissue disorganization and metabolomic and transcriptomic signatures typical of nonalcoholic steato-hepatitis (NASH). This phenotype, similar to that observed in F0 and F1 females, was accompanied by a pancreatic insulin secretory defect. Metabolic disrupted F2-BaP females laid eggs with metabolite contents significantly different from the control and these eggs did not produce viable progeny. This study demonstrated that an ED can induce transgenerational disruption of metabolism and population collapse in amphibians under laboratory conditions. These results show that ED benzo[a]pyrene can impact metabolism over multiple generations and support epidemiological studies implicating environmental EDs in metabolic diseases in humans.
Asunto(s)
Disruptores Endocrinos , Enfermedades Metabólicas , Animales , Benzo(a)pireno/toxicidad , Femenino , Humanos , Enfermedades Metabólicas/inducido químicamente , Reproducción , XenopusRESUMEN
Numerous studies suggest that amphibians are highly sensitive to endocrine disruptors (ED) but their precise role in population decline remains unknown. This study shows that frogs exposed to a mixture of ED throughout their life cycle, at environmentally relevant concentrations, developed an unexpected metabolic syndrome. Female Silurana (Xenopus) tropicalis exposed to a mixture of benzo[a]pyrene and triclosan (50â¯ng·L-1 each) from the tadpole stage developed liver steatosis and transcriptomic signature associated with glucose intolerance syndrome, and pancreatic insulin hyper secretion typical of pre-diabetes. These metabolic disorders were associated with delayed metamorphosis and developmental mortality in their progeny, both of which have been linked to reduced adult recruitment and reproductive success. Indeed, F1 females were smaller and lighter and presented reduced reproductive capacities, demonstrating a reduced fitness of ED-exposed Xenopus. Our results confirm that amphibians are highly sensitive to ED even at concentrations considered to be safe for other animals. This study demonstrates that ED might be considered as direct contributing factors to amphibian population decline, due to their disruption of energetic metabolism.
Asunto(s)
Benzo(a)pireno/toxicidad , Disruptores Endocrinos/toxicidad , Enfermedades Metabólicas/veterinaria , Metamorfosis Biológica/efectos de los fármacos , Triclosán/toxicidad , Xenopus/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Femenino , Hígado/efectos de los fármacos , Hígado/fisiología , Hígado/fisiopatología , Enfermedades Metabólicas/inducido químicamente , Enfermedades Metabólicas/metabolismo , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/metabolismo , Síndrome Metabólico/veterinaria , Reproducción/efectos de los fármacos , TranscriptomaRESUMEN
Seeds of sunflower plants coated with the fipronil (14)C-insecticide were allowed to grow in the greenhouse. The distribution of the (14)C-compounds was studied in each part of the plant after three months. After 83 days of culture small amounts of (14)C-compounds were found in the inflorescence (0.6 per thousand of the seed deposit) which were fipronil itself or its lipophilic or hydrophilic metabolites. The (14)C-compounds were found in each part of the inflorescence (bracts, ray and disk florets containing pollen, akenes). The (14)C-concentration in the xylem sap evaluated at this stage was much too low to explain the accumulated amount in the inflorescence. Under controlled conditions in a culture chamber, it was then demonstrated that a net phloem transfer of (14)C-fipronil occurred from developed leaves to growing organs. This allowed us to suppose that a similar (14)C-fipronil phloem transfer could occur toward the inflorescence during its formation. A quantitative evaluation suggests that most of the labeled compounds at this stage were not coming from the leaves but from the roots and stem where storage compounds were hydrolyzed for sustaining inflorescence development.
Asunto(s)
Helianthus/crecimiento & desarrollo , Helianthus/metabolismo , Insecticidas/metabolismo , Floema/metabolismo , Pirazoles/metabolismo , Radioisótopos de Carbono , Hojas de la Planta/metabolismo , Pirazoles/análisisRESUMEN
In animals biotransformation and immune system are not totally independent, there are numerous functional interrelationships between these two systems. They are both implicated in the capacity of organisms to resist to a wide variety of environmental components such as viruses, bacteria and xenobiotics. It is known for a long time that the immune system functions as a physiologic system and interacts with all the other components of the organism including nervous or endocrine ones. In the same manner, the biotransformation system (especially the cytochrome P450 monooxygenases) is involved in the regulation of numerous hormone productions. In this way, many studies in mammals have revealed the possible interaction between immune and biotransformation systems. Among these interactions, the capacity of the activation of host defense mechanisms to down-regulate microsomal cytochrome P450 and the role of biotransformation system in the xenobiotic-mediated immunotoxicity have been underlined. Advances in the basic knowledge of fish immune and biotransformation systems should lead to a better understanding of the possible interactions between both systems and should improve fish health monitoring which is a crucial ecotoxicological goal.
Asunto(s)
Biotransformación/inmunología , Peces/inmunología , Peces/metabolismo , Sistema Inmunológico/inmunología , Animales , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/inmunología , Regulación de la Expresión Génica , Receptores de Hidrocarburo de Aril/metabolismo , Xenobióticos/toxicidadRESUMEN
BACKGROUND: Malaria was endemic in the Rhône-Alpes area of eastern France in the 19th century and life expectancy was particularly shortened in Alpine valleys. This study was designed to determine how the disease affected people in the area and to identify the factors influencing malaria transmission. METHODS: Demographic data of the 19th century were collected from death registers of eight villages of the flood-plain of the river Isère. Correlations were performed between these demographic data and reconstructed meteorological data. Archive documents from medical practitioners gave information on symptoms of ill people. Engineer reports provided information on the hydraulic project developments in the Isère valley. RESULTS: Description of fevers was highly suggestive of endemic malaria transmission in the parishes neighbouring the river Isère. The current status of anopheline mosquitoes in the area supports this hypothesis. Mean temperature and precipitation were poorly correlated with demographic data, whereas the chronology of hydrological events correlated with fluctuations in death rates in the parishes. CONCLUSION: Nowadays, most of the river development projects involve the creation of wet areas, enabling controlled flooding events. Flood-flow risk and the re-emergence of vector-borne diseases would probably be influenced by the climate change. The message is not to forget that human disturbance of any functioning hydrosystem has often been linked to malaria transmission in the past.
Asunto(s)
Enfermedades Endémicas , Malaria/historia , Malaria/transmisión , Demografía , Ecosistema , Planificación Ambiental , Francia/epidemiología , Historia del Siglo XIX , Humanos , Malaria/epidemiología , Registros Médicos/estadística & datos numéricos , Conceptos Meteorológicos , Mortalidad , Población Rural , Movimientos del AguaRESUMEN
Seed-coating with the insecticide fipronil has been intensively used in sunflower cultivation to control soil pests such as wireworms. A research project was undertaken to determine the soil distribution of fipronil and of its main phenylpyrazole metabolites. Under agronomic conditions, the quantity of fipronil in the seed-coat (437 microg/seed) decreased continuously during the cultivation period (3.9 microg day(-1) during the first two months; 0.3 microg day(-1) during the next four months). At the end of the cultivation period, 42% of all phenylpyrazole compounds remained in the seed-coat. Fipro nil was poorly mobile in soil, and at the end of the cultivation period it was mostly concentrated in the soil layer close to the seed (3240 microg kg(-1) soil). Starting from the seed-coating, a fipronil concentration gradient was measured in the soil, up to a distance of 11 cm from the seed. Degradation in the soil occurred at a moderate rate, probably due to the fact that water solubilization of the solid active ingredient present in the seed coating was rate limiting. Indeed, after 6 months of cultivation, only 51% of the fipronil seed-coating was found in the soil, about 7% having been absorbed by the sunflower plant, and 42% remaining in the seed coat. The predominant metabolites produced in the soil were sulfone-fipronil, sulfide-fipronil and amide-fipronil, which were produced at average rates of 5 microg kg(-1) soil day(-1), 3 microg kg(-1) soil day(-1), and 0.4 microg kg(-1) soil day(-1), respectively. In contrast, the photoproduct, desulfinyl-fipronil, was barely detected. All phenylpyrazole compounds were poorly mobile, except for the amide derivative, which is devoid of insecticidal activity in marked contrast to the other metabolites. Furthermore, detectable soil contamination was limited to a zone of about 11 cm around the seed.
Asunto(s)
Insecticidas/análisis , Insecticidas/metabolismo , Pirazoles/análisis , Pirazoles/metabolismo , Suelo/análisis , Monitoreo del Ambiente , Helianthus , Estructura Molecular , Semillas/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismoRESUMEN
The persistent organochlorine pesticides (OCPs) in soils are suspected to disturb soil biogeochemical cycles. This study addressed the dynamic changes in soil functionality under lindane and chlordecone exposures with or without maize plant. Decreases in soil ammonium concentration, potential nitrogen mineralization and microbial biomass were only OCP-influenced in bulk soils. OCPs appeared to inhibit the ammonification step. With plants, soil functionality under OCP stress was similar to controls demonstrating the plant influence to ensure the efficiency of C- and N-turnover in soils. Moreover, OCPs did not impact the microbial community physiological profile in all tested conditions. However, microbial community structure was OCP-modified only in the presence of plants. Abundances of gram-negative and saprophytic fungi increased (up to +93% and +55%, respectively) suggesting a plant stimulation of nutrient turnover and rhizodegradation processes. Nevertheless, intimate microbial/plant interactions appeared to be OCP-impacted with depletions in mycorrhizae and micro/meso-fauna abundances (up to -53% and -56%, respectively) which might have adverse effects on more long-term plant growth (3-4 months). In short-term experiment (28days), maize growth was similar to the control ones, indicating an enhanced plasticity of the soil functioning in the presence of plants, which could efficiently participate to the remediation of OCP-contaminated soils.
Asunto(s)
Clordecona/toxicidad , Hexaclorociclohexano/toxicidad , Raíces de Plantas/efectos de los fármacos , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Biomasa , Carbono/análisis , Nitrógeno/análisis , Suelo/química , Zea maysRESUMEN
The phenylpyrazole insecticide, fipronil, is used in seed coating against Agriotes larvae, which infest mainly corn and sunflower. Coating the seeds of the cultivated plants with fipronil has proven its effectiveness against Agriotes populations. In the case of sunflower or even corn, the possible root uptake of this insecticide may lead to a toxic effect against pollinators such as honeybees. In the present report, the uptake and transport of fipronil inside the sunflower seedling was studied in the laboratory. In a first study, sunflower was cultivated on an aqueous medium containing fipronil. An intense root uptake of fipronil occurred, leading to a transport into leaves depending upon transpiration. In a second study, plants were cultivated on a soil in which fipronil was uniformly distributed. Under our soil conditions (20% organic carbon), the partition coefficient between soil and water (K(d)) was found to be equal to 386 +/- 30. The average rate of fipronil transfer from soil water to seedlings was from 2 to 2.6 times lower than water transfer. During the 3 week experiment, 55% of recovered labeled compounds was in the parent form and 35% had been converted to lipophilic metabolites, with either a 4-CF(3)-SO(2) or 4-CF(3)-S substituant, which are also very potent lipophilic insecticides. This paper suggests that the possible uptake of fipronil by sunflower seedlings under agronomic conditions is mainly controlled by the physicochemical characteristics of the seed-coating mixture.
Asunto(s)
Transporte Biológico , Helianthus/metabolismo , Insecticidas/metabolismo , Pirazoles/metabolismo , Radioisótopos de Carbono , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Pirazoles/análisis , Plantones/metabolismo , Suelo/análisis , Agua/químicaRESUMEN
Invasive mosquitoes are economic and sanitary concerns especially in Europe and America. Most work has emphasized the role of resistance [Berrada, S., Fournier, D., Cuany, A., Nguyen, T.X., 1994. Identification of resistance mechanisms in a selected laboratory strain of Cacopsylla pyri (Homoptera: Psyllidae): altered acetylcholinesterases and detoxifying oxidases. Pesticide Biochemistry and Physiology 48, 41-47; Hemingway, J., Hawkes, N.J., McCarroll, L., Ranson, H., 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology 34, 653-665] to insecticides. Compounds acting on larval sensitivity to insecticides are not well studied and their action remains poorly understood. Among several residual chemicals in ecosystems, particularly in wetlands, we identified a possible interaction of an herbicide on larval resistance to an insecticide. Our work contributes to the global control of mosquito populations by identifying possible pathways of resistance to insecticides of these vectors. Resistance or tolerance to insecticide treatments might contribute to successful invasion by mosquitoes. Here we report an ecotoxicological approach to test the hypothesis of an indirect effect of atrazine on mortality of an invasive vector. A brief contact (48h) between Aedes aegypti mosquito larvae and atrazine led to a modification of larval sensitivity to an insecticide: using atrazine as an inducer led to a decrease in the mortality of larvae treated with Bacillus thuringiensis var. israelensis (Bti).
Asunto(s)
Aedes/efectos de los fármacos , Atrazina/farmacología , Bacillus thuringiensis/química , Herbicidas/farmacología , Insecticidas/farmacología , Control Biológico de Vectores , Aedes/crecimiento & desarrollo , Animales , Resistencia a los Insecticidas/efectos de los fármacos , Insecticidas/aislamiento & purificación , Larva/efectos de los fármacos , Larva/crecimiento & desarrolloRESUMEN
(1)H-HRMAS NMR-based metabolomics was used to better understand the toxic effects on maize root tips of organochlorine pesticides (OCPs), namely lindane (γHCH) and chlordecone (CLD). Maize seedlings were exposed to 2.5 µM γHCH (mimicking basic environmental contaminations) for 7 days and compared to 2.5 µM CLD and 25 µM γHCH for 7 days (mimicking hot spot contaminations). The (1)H-HRMAS NMR-based metabolomic profiles provided details of the changes in carbohydrates, amino acids, tricarboxylic acid (TCA) cycle intermediates and fatty acids with a significant separation between the control and OCP-exposed root tips. First of all, alterations in the balance between glycolysis/gluconeogenesis were observed with sucrose depletion and with dose-dependent fluctuations in glucose content. Secondly, observations indicated that OCPs might inactivate the TCA cycle, with sizeable succinate and fumarate depletion. Thirdly, disturbances in the amino acid composition (GABA, glutamine/glutamate, asparagine, isoleucine) reflected a new distribution of internal nitrogen compounds under OCP stress. Finally, OCP exposure caused an increase in fatty acid content, concomitant with a marked rise in oxidized fatty acids which could indicate failures in cell integrity and vitality. Moreover, the accumulation of asparagine and oxidized fatty acids with the induction of LOX3 transcription levels under OCP exposure highlighted an induction of protein and lipid catabolism. The overall data indicated that the effect of OCPs on primary metabolism could have broader physiological consequences on root development. Therefore, (1)H-HRMAS NMR metabolomics is a sensitive tool for understanding molecular disturbances under OCP exposure and can be used to perform a rapid assessment of phytotoxicity.
Asunto(s)
Hidrocarburos Clorados/toxicidad , Metaboloma/efectos de los fármacos , Plaguicidas/toxicidad , Zea mays/efectos de los fármacos , Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono , Ácidos Grasos/metabolismo , Hidrocarburos Clorados/metabolismo , Metabolismo de los Lípidos , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Plaguicidas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Zea mays/metabolismoRESUMEN
Despite numerous studies suggesting that amphibians are highly sensitive to cumulative anthropogenic stresses, the role played by endocrine disruptors (EDs) in the decline of amphibian populations remains unclear. EDs have been extensively studied in adult amphibians for their capacity to disturb reproduction by interfering with the sexual hormone axis. Here, we studied the in vivo responses of Xenopus tropicalis males exposed to environmentally relevant concentrations of each ED, benzo[a]pyrene (BaP) and triclosan (TCS) alone (10 µg L(-1)) or a mixture of the two (10 µg L(-1) each) over a 24 h exposure period by following the modulation of the transcription of key genes involved in metabolic, sexual and immunity processes and the cellular changes in liver, spleen and testis. BaP, TCS and the mixture of the two all induced a marked metabolic disorder in the liver highlighted by insulin resistance-like and non-alcoholic fatty liver disease (NAFLD)-like phenotypes together with hepatotoxicity due to the impairment of lipid metabolism. For TCS and the mixture, these metabolic disorders were concomitant with modulation of innate immunity. These results confirmed that in addition to the reproductive effects induced by EDs in amphibians, metabolic disorders and immune system disruption should also be considered.
Asunto(s)
Antiinfecciosos Locales/toxicidad , Benzo(a)pireno/toxicidad , Disruptores Endocrinos/toxicidad , Inmunidad Innata/efectos de los fármacos , Enfermedades Metabólicas/inducido químicamente , Triclosán/toxicidad , Xenopus/crecimiento & desarrollo , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/inmunología , Masculino , Reproducción/efectos de los fármacos , Bazo/efectos de los fármacos , Bazo/inmunología , Testículo/efectos de los fármacos , Testículo/inmunologíaRESUMEN
Mosquito breeding sites consist of water pools, which can either be large open areas or highly covered ponds with vegetation, thus with different light exposures combined with the presence in water of xenobiotics including polycyclic aromatic hydrocarbons (PAHs) generated by urban pollution. UV light and PAHs are abiotic factors known to both affect the mosquito insecticide resistance status. Nonetheless, their potential combined effects on the mosquito physiology have never been investigated. The present article aims at describing the effects of UV exposure alongside water contamination with two major PAH pollutants (fluoranthene and benzo[a]pyrene) on a laboratory population of the yellow fever mosquito Aedes aegypti. To evaluate the effects of PAH exposure and low energetic UV (UV-A) irradiation on mosquitoes, different parameters were measured including: (1) The PAH localization and its impact on cell mortality by fluorescent microscopy; (2) The detoxification capacities (cytochrome P450, glutathione-S-transferase, esterase); (3) The responses to oxidative stress (Reactive Oxygen Species-ROS) and (4) The tolerance of mosquito larvae to a bioinsecticide (Bacillus thuringiensis subsp. israelensis-Bti) and to five chemical insecticides (DDT, imidacloprid, permethrin, propoxur and temephos). Contrasting effects regarding mosquito cell mortality, detoxification and oxidative stress were observed as being dependent on the pollutant considered, despite the fact that the two PAHs belong to the same family. Moreover, UV is able to modify pollutant effects on mosquitoes, including tolerance to three insecticides (imidacloprid, propoxur and temephos), cell damage and response to oxidative stress. Taken together, our results suggest that UV and pollution, individually or in combination, are abiotic parameters that can affect the physiology and insecticide tolerance of mosquitoes; but the complexity of their direct effect and of their interaction will require further investigation to know in which condition they can affect the efficacy of insecticide-based vector control strategies in the field.