Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Stem Cells ; 31(7): 1321-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23533187

RESUMEN

Natriuretic peptide receptor A (NPRA), the signaling receptor for the cardiac hormone, atrial natriuretic peptide (ANP), is expressed abundantly in inflamed/injured tissues and tumors. NPRA deficiency substantially decreases tissue inflammation and inhibits tumor growth. However, the precise mechanism of NPRA function and whether it links inflammation and tumorigenesis remains unknown. Since both injury repair and tumor growth require stem cell recruitment and angiogenesis, we examined the role of NPRA signaling in tumor angiogenesis as a model of tissue injury repair in this study. In in vitro cultures, aortas from NPRA-KO mice show significantly lower angiogenic response compared to wild-type counterparts. The NPRA antagonist that decreases NPRA expression, inhibits lipopolysaccharide-induced angiogenesis. The reduction in angiogenesis correlates with decreased expression of vascular endothelial growth factor and chemokine (C-X-C motif) receptor 4 (CXCR4) implicating a cell recruitment defect. To test whether NPRA regulates migration of cells to tumors, mesenchymal stem cells (MSCs) were administered i.v., and the results showed that MSCs fail to migrate to the tumor microenvironment in NPRA-KO mice. However, coimplanting tumor cells with MSCs increases angiogenesis and tumorigenesis in NPRA-KO mice, in part by promoting expression of CXCR4 and its ligand, stromal cell-derived factor 1α. Taken together, these results demonstrate that NPRA signaling regulates stem cell recruitment and angiogenesis leading to tumor growth. Thus, NPRA signaling provides a key linkage between inflammation and tumorigenesis, and NPRA may be a target for drug development against cancers and tissue injury repair.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma Pulmonar de Lewis/irrigación sanguínea , Carcinoma Pulmonar de Lewis/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patología , Femenino , Inmunohistoquímica , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Receptores del Factor Natriurético Atrial/genética , Transducción de Señal , Microambiente Tumoral
2.
Nanomedicine ; 9(7): 903-11, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23352802

RESUMEN

A near infrared (NIR) triggered drug delivery platform based on the chitosan-modified chemically reduced graphene oxide (CRGO) incorporated into a thermosensitive nanogel (CGN) was developed. CGN exhibited an NIR-induced thermal effect similar to that of CRGO, reversible thermo-responsive characteristics at 37-42 °C and high doxorubicin hydrochloride (DOX) loading capacity (48 wt%). The DOX loaded CGN (DOX-CGN) released DOX faster at 42 °C than at 37 °C. The fluorescence images revealed DOX expression in the cytoplasm of cancer cells when incubated with DOX-CGN at 37 °C but in the nucleus at 42 °C. Upon irradiation with NIR light (808 nm), a rapid, repetitive DOX release from the DOX-CGN was observed. Furthermore, the cancer cells incubated with DOX-CGN and irradiated with NIR light displayed significantly greater cytotoxicity than without irradiation owing to NIR-triggered increase in temperature leading to nuclear DOX release. These results demonstrate CGN's promising application for on-demand drug release by NIR light. FROM THE CLINICAL EDITOR: These investigators report the successful development of a novel near infrared triggered drug delivery platform based on chitosan-modified chemically reduced graphene oxide (CRGO) incorporated into a thermosensitive nanogel (CGN).


Asunto(s)
Quitosano/química , Doxorrubicina/farmacología , Grafito/química , Polietilenglicoles/química , Polietileneimina/química , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Quitosano/toxicidad , Preparaciones de Acción Retardada , Doxorrubicina/química , Endocitosis/efectos de los fármacos , Grafito/toxicidad , Hidrodinámica , Rayos Infrarrojos , Ratones , Nanogeles , Polietilenglicoles/toxicidad , Polietileneimina/toxicidad , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Temperatura
3.
Curr Biol ; 26(24): 3288-3302, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27889261

RESUMEN

Although the role of NF-κB-inducing kinase (NIK) in immunity is well established, its relevance in cancer is just emerging. Here we describe novel functions for NIK in regulating mitochondrial dynamics and motility to promote cell invasion. We show that NIK is localized to mitochondria in cancer cell lines, ex vivo tumor tissue, and mouse embryonic fibroblasts (MEFs). NIK promotes mitochondrial fission, velocity, and directional migration, resulting in subcellular distribution of mitochondria to the periphery of migrating cells. Moreover, NIK is required for recruitment of Drp1 to mitochondria, forms a complex with Drp1, and regulates Drp1 phosphorylation at Ser-616 and dephosphorylation at Ser-637. Consistent with a role for NIK in regulating mitochondrial dynamics, we demonstrate that Drp1 is required for NIK-dependent, cytokine-induced invasion. Importantly, using MEFs, we demonstrate that the established downstream mediators of NIK signaling, IκB kinase α/ß (IKKα/ß) and NF-κB, are not required for NIK to regulate cell invasion, Drp1 mitochondrial localization, or mitochondrial fission. Our results establish a new paradigm for IKK-independent NIK signaling and significantly expand the current dogma that NIK is predominantly cytosolic and exclusively regulates NF-κB activity. Overall, these findings highlight the importance of NIK in tumor pathogenesis and invite new therapeutic strategies that attenuate mitochondrial dysfunction through inhibition of NIK and Drp1.


Asunto(s)
Fibroblastos/metabolismo , Mitocondrias/metabolismo , Invasividad Neoplásica , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/fisiología , Animales , Línea Celular Tumoral , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/genética , Quinasa de Factor Nuclear kappa B
4.
J Mater Chem B ; 1(35): 4396-4405, 2013 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-24883188

RESUMEN

Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene nanoparticle (CMG) platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI images suggest CMG as a strong T2 contrast-enhancing agent. The CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and more effective (IC50 = 2 µM) in killing A549 lung cancer cells than free DOX (IC50 = 4 µM). CMGs efficiently deliver DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of GFP-plasmid encapsulated within DOX-CMGs into tumor-bearing mice has showed both GFP expression and DOX accumulation at the tumor site at 24 and 48 hrs after administration. These results indicate CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene- therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real -time monitoring of therapeutic effect for cancer.

5.
PLoS One ; 8(10): e75345, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24146752

RESUMEN

The development of a suitable three dimensional (3D) culture system for anticancer drug development remains an unmet need. Despite progress, a simple, rapid, scalable and inexpensive 3D-tumor model that recapitulates in vivo tumorigenesis is lacking. Herein, we report on the development and characterization of a 3D nanofibrous scaffold produced by electrospinning a mixture of poly(lactic-co-glycolic acid) (PLGA) and a block copolymer of polylactic acid (PLA) and mono-methoxypolyethylene glycol (mPEG) designated as 3P. Cancer cells cultured on the 3P scaffold formed tight irregular aggregates similar to in vivo tumors, referred to as tumoroids that depended on the topography and net charge of the scaffold. 3P scaffolds induced tumor cells to undergo the epithelial-to-mesenchymal transition (EMT) as demonstrated by up-regulation of vimentin and loss of E-cadherin expression. 3P tumoroids showed higher resistance to anticancer drugs than the same tumor cells grown as monolayers. Inhibition of ERK and PI3K signal pathways prevented EMT and reduced tumoroid formation, diameter and number. Fine needle aspirates, collected from tumor cells implanted in mice when cultured on 3P scaffolds formed tumoroids, but showed decreased sensitivity to anticancer drugs, compared to tumoroids formed by direct seeding. These results show that 3P scaffolds provide an excellent platform for producing tumoroids from tumor cell lines and from biopsies and that the platform can be used to culture patient biopsies, test for anticancer compounds and tailor a personalized cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Ácido Láctico/química , Ácido Poliglicólico/química , Técnicas de Cultivo de Tejidos/métodos , Andamios del Tejido , Animales , Biomarcadores/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Poliésteres , Polietilenglicoles/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros/química , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Electricidad Estática , Vimentina/genética , Vimentina/metabolismo
6.
J Control Release ; 163(1): 82-92, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22561339

RESUMEN

Gene therapy is a promising therapeutic approach for treating disease, but the efficient delivery of genes to desired locations with minimal side effects remains a challenge. In addition to gene therapy, it is also highly desirable to provide sensitive imaging information in patients for disease diagnosis, screening and post-therapy monitoring. Here, we report on the development of dual-purpose chitosan and polyethyleneimine (PEI) coated magnetic micelles (CP-mag-micelles) that can deliver nucleic acid-based therapeutic agents and also provide magnetic resonance imaging (MRI). These 'theranostic' CP-mag-micelles are composed of monodisperse hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) loaded into the cores of micelles that are self-assembled from a block copolymer of poly (D, L-lactide) (PLA) and monomethoxy polyethylene glycol (mPEG). For efficient loading and protection of the nucleic acids the micelles were coated with cationic polymers, such as chitosan and PEI. The morphology and size distribution of the CP-mag-micelles were characterized and their potential for use as an MRI-probe was tested using an MRI scanner. The T(2) relaxivity of mag-micelles was similar to CP-mag-micelles confirming that coating with cationic polymers did not alter magnetism. Nanoparticles coated with chitosan:PEI at a weight ratio of 5:5 showed higher transfection efficiency in HEK293, 3T3 and PC3 cells than with weight ratios of 3:7 or 7:3. CP-mag-micelles are biocompatible, can be delivered to various organs and are safe. A single injection of CP-mag-micelles carrying reporter plasmids in vivo expressed genes for at least one week. Collectively, our results demonstrate that a structural reinforcement of SPIONs loaded in the core of an mPEG-PLA micelle coated with cationic polymers provides efficient DNA delivery and enhanced MRI potential, and affords a promising candidate for theranostics in the future.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Micelas , Transfección/métodos , Células 3T3 , Animales , Carbocianinas/administración & dosificación , Carbocianinas/farmacocinética , Línea Celular Tumoral , Quitosano/administración & dosificación , Quitosano/química , ADN/administración & dosificación , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/farmacocinética , Expresión Génica , Células HEK293 , Humanos , Fenómenos Magnéticos , Nanopartículas de Magnetita/administración & dosificación , Nanopartículas de Magnetita/química , Ratones , Ratones Endogámicos C57BL , Poliésteres/administración & dosificación , Poliésteres/química , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Polietileneimina/administración & dosificación , Polietileneimina/química , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA