Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytopathology ; 113(9): 1729-1744, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37399026

RESUMEN

High-throughput sequencing (HTS) and sequence mining tools revolutionized virus detection and discovery in recent years, and implementing them with classical plant virology techniques results in a powerful approach to characterize viruses. An example of a virus discovered through HTS is Solanum nigrum ilarvirus 1 (SnIV1) (Bromoviridae), which was recently reported in various solanaceous plants from France, Slovenia, Greece, and South Africa. It was likewise detected in grapevines (Vitaceae) and several Fabaceae and Rosaceae plant species. Such a diverse set of source organisms is atypical for ilarviruses, thus warranting further investigation. In this study, modern and classical virological tools were combined to accelerate the characterization of SnIV1. Through HTS-based virome surveys, mining of sequence read archive datasets, and a literature search, SnIV1 was further identified from diverse plant and non-plant sources globally. SnIV1 isolates showed relatively low variability compared with other phylogenetically related ilarviruses. Phylogenetic analyses showed a distinct basal clade of isolates from Europe, whereas the rest formed clades of mixed geographic origin. Furthermore, systemic infection of SnIV1 in Solanum villosum and its mechanical and graft transmissibility to solanaceous species were demonstrated. Near-identical SnIV1 genomes from the inoculum (S. villosum) and inoculated Nicotiana benthamiana were sequenced, thus partially fulfilling Koch's postulates. SnIV1 was shown to be seed-transmitted and potentially pollen-borne, has spherical virions, and possibly induces histopathological changes in infected N. benthamiana leaf tissues. Overall, this study provides information to better understand the diversity, global presence, and pathobiology of SnIV1; however, its possible emergence as a destructive pathogen remains uncertain. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Ilarvirus , Solanum , Filogenia , Enfermedades de las Plantas , Nicotiana
2.
Biologicals ; 69: 70-75, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33246870

RESUMEN

Viral contamination is a major concern for biological products. Therefore, virus testing of raw materials and cells is essential for the safety of the final product. We used high-throughput sequencing to detect viral-like sequences in selected CHO cell lines. Our aim was to test various approaches of sample preparation, to establish a pipeline for metagenomic analysis and to characterize standard viral metagenome of production and parental CHO cell lines. The comparison of the metagenomics composition of the differently prepared samples showed that among four tested approaches sequencing of ribosomal RNA depleted total RNA is the most promising approach. The metagenomics investigation of one production and three parental CHO cell lines of diverse origin did not indicate the presence of adventitious viral agents in the investigated samples. The study revealed an expected background of virus-like nucleic acids in the samples, which originate from remains of expression vectors, endogenized viral elements and residuals of bacteriophages.


Asunto(s)
Células CHO , Metagenoma , Virus , Animales , Cricetinae , Cricetulus , Secuenciación de Nucleótidos de Alto Rendimiento , Virus/aislamiento & purificación
3.
Plant Dis ; 105(9): 2325-2332, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33761774

RESUMEN

Tomato production worldwide is affected by numerous plant virus species. The early and accurate detection of viruses is a critical step for disease control. However, the simultaneous detection of the most known tomato viruses can be difficult because of the high number and diversity of tomato-infecting viruses. Here, we have identified four new viruses in Serbia by applying target-independent small RNA high-throughput sequencing (HTS). HTS was applied on pools of samples and separate samples, in total comprising 30 tomato samples that exhibited (severe) virus-like symptoms and were collected in Serbia during three annual surveys (2011 to 2013). These samples had previously tested negative for the presence of 16 tomato viruses using targeted detection methods. Three divergent complete genome sequences of Physostegia chlorotic mottled virus were obtained from different localities, indicating for the first time that this virus is widespread in Serbia and might represent an emergent viral pathogen of tomato. The tomato torrado virus was detected at one locality with devastating yield losses. The southern tomato virus was detected at two localities, and the spinach latent virus was detected at one locality. In addition, we detected the presence of one already-known virus in Serbia, the tomato spotted wilt orthotospovirus. All the HTS results were subsequently confirmed by targeted detection methods. In this study, the successful application of post hoc HTS testing of a limited number of pooled samples resulted in the discovery of new viruses. Thus, our results encourage the use of HTS in research and diagnostic laboratories, including laboratories that have limited resources to resolve disease etiology.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Virus de Plantas , Solanum lycopersicum , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas , Virus de Plantas/genética , Serbia
4.
J Virol ; 91(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28592544

RESUMEN

RNA viruses are one of the fastest-evolving biological entities. Within their hosts, they exist as genetically diverse populations (i.e., viral mutant swarms), which are sculpted by different evolutionary mechanisms, such as mutation, natural selection, and genetic drift, and also the interactions between genetic variants within the mutant swarms. To elucidate the mechanisms that modulate the population diversity of an important plant-pathogenic virus, we performed evolution experiments with Potato virus Y (PVY) in potato genotypes that differ in their defense response against the virus. Using deep sequencing of small RNAs, we followed the temporal dynamics of standing and newly generated variations in the evolving viral lineages. A time-sampled approach allowed us to (i) reconstruct theoretical haplotypes in the starting population by using clustering of single nucleotide polymorphisms' trajectories and (ii) use quantitative population genetics approaches to estimate the contribution of selection and genetic drift, and their interplay, to the evolution of the virus. We detected imprints of strong selective sweeps and narrow genetic bottlenecks, followed by the shift in frequency of selected haplotypes. Comparison of patterns of viral evolution in differently susceptible host genotypes indicated possible diversifying evolution of PVY in the less-susceptible host (efficient in the accumulation of salicylic acid).IMPORTANCE High diversity of within-host populations of RNA viruses is an important aspect of their biology, since they represent a reservoir of genetic variants, which can enable quick adaptation of viruses to a changing environment. This study focuses on an important plant virus, Potato virus Y, and describes, at high resolution, temporal changes in the structure of viral populations within different potato genotypes. A novel and easy-to-implement computational approach was established to cluster single nucleotide polymorphisms into viral haplotypes from very short sequencing reads. During the experiment, a shift in the frequency of selected viral haplotypes was observed after a narrow genetic bottleneck, indicating an important role of the genetic drift in the evolution of the virus. On the other hand, a possible case of diversifying selection of the virus was observed in less susceptible host genotypes.


Asunto(s)
Evolución Molecular , Flujo Genético , Genética de Población , Potyvirus/clasificación , Potyvirus/crecimiento & desarrollo , Solanum tuberosum/virología , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Polimorfismo de Nucleótido Simple , Potyvirus/genética , Solanum tuberosum/inmunología , Factores de Tiempo
5.
Anal Bioanal Chem ; 410(16): 3815-3825, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29725728

RESUMEN

RNA viruses have a great potential for high genetic variability and rapid evolution that is generated by mutation and recombination under selection pressure. This is also the case of Potato virus Y (PVY), which comprises a high diversity of different recombinant and non-recombinant strains. Consequently, it is hard to develop reverse transcription real-time quantitative PCR (RT-qPCR) with the same amplification efficiencies for all PVY strains which would enable their equilibrate quantification; this is specially needed in mixed infections and other studies of pathogenesis. To achieve this, we initially transferred the PVY universal RT-qPCR assay to a reverse transcription droplet digital PCR (RT-ddPCR) format. RT-ddPCR is an absolute quantification method, where a calibration curve is not needed, and it is less prone to inhibitors. The RT-ddPCR developed and validated in this study achieved a dynamic range of quantification over five orders of magnitude, and in terms of its sensitivity, it was comparable to, or even better than, RT-qPCR. RT-ddPCR showed lower measurement variability. We have shown that RT-ddPCR can be used as a reference tool for the evaluation of different RT-qPCR assays. In addition, it can be used for quantification of RNA based on in-house reference materials that can then be used as calibrators in diagnostic laboratories.


Asunto(s)
Potyvirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Automatización , Secuencia de Bases , Genes Virales , Potyvirus/clasificación , Potyvirus/genética , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Recombinación Genética , Homología de Secuencia de Aminoácido
6.
Electrophoresis ; 38(22-23): 2827-2836, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28497490

RESUMEN

Key properties of monolithic chromatographic supports, make them suitable for separation and/or concentration of large biomolecules, especially virus particles and viral genomes. One by one, the studies that have been completed so far, contributed to the knowledge that monolith chromatography has hardly any limitation to be applied in virus research. Viruses of different sizes, possessing icosahedral structure and symmetrical morphology, as well as rod-shaped or filamentous viruses with helical structure, even enveloped ones, all of them could be successfully managed by means of monolith chromatography. Same is true for viral genomes, primarily when being distinct from other nucleic acid forms present in a host cell. This review is exclusively focused on viruses. It describes the application of monolith chromatography to different problematics within the virus research field. The reviewed achievements offer new possibilities and trigger new aspects in virology.


Asunto(s)
Investigación Biomédica/métodos , Cromatografía por Intercambio Iónico , Virión/aislamiento & purificación , Virología/métodos , Cromatografía por Intercambio Iónico/instrumentación , Cromatografía por Intercambio Iónico/métodos , ADN Viral/análisis , ADN Viral/química , ADN Viral/aislamiento & purificación , ARN Viral/análisis , ARN Viral/química , ARN Viral/aislamiento & purificación
7.
J Virol ; 89(9): 4760-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25673712

RESUMEN

UNLABELLED: RNA viruses exist within a host as a population of mutant sequences, often referred to as quasispecies. Within a host, sequences of RNA viruses constitute several distinct but interconnected pools, such as RNA packed in viral particles, double-stranded RNA, and virus-derived small interfering RNAs. We aimed to test if the same representation of within-host viral population structure could be obtained by sequencing different viral sequence pools. Using ultradeep Illumina sequencing, the diversity of two coexisting Potato virus Y sequence pools present within a plant was investigated: RNA isolated from viral particles and virus-derived small interfering RNAs (the derivatives of a plant RNA silencing mechanism). The mutational landscape of the within-host virus population was highly similar between both pools, with no notable hotspots across the viral genome. Notably, all of the single-nucleotide polymorphisms with a frequency of higher than 1.6% were found in both pools. Some unique single-nucleotide polymorphisms (SNPs) with very low frequencies were found in each of the pools, with more of them occurring in the small RNA (sRNA) pool, possibly arising through genetic drift in localized virus populations within a plant and the errors introduced during the amplification of silencing signal. Sequencing of the viral particle pool enhanced the efficiency of consensus viral genome sequence reconstruction. Nonhomologous recombinations were commonly detected in the viral particle pool, with a hot spot in the 3' untranslated and coat protein regions of the genome. We stress that they present an important but often overlooked aspect of virus population diversity. IMPORTANCE: This study is the most comprehensive whole-genome characterization of a within-plant virus population to date and the first study comparing diversity of different pools of viral sequences within a host. We show that both virus-derived small RNAs and RNA from viral particles could be used for diversity assessment of within-plant virus population, since they show a highly congruent portrayal of the virus mutational landscape within a plant. The study is an important baseline for future studies of virus population dynamics, for example, during the adaptation to a new host. The comparison of the two virus sequence enrichment techniques, sequencing of virus-derived small interfering RNAs and RNA from purified viral particles, shows the strength of the latter for the detection of recombinant viral genomes and reconstruction of complete consensus viral genome sequence.


Asunto(s)
Mutación , Plantas/virología , Polimorfismo de Nucleótido Simple , Potyvirus/genética , ARN Interferente Pequeño/genética , ARN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
8.
Plant Dis ; 100(2): 453-464, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30694152

RESUMEN

In total, 150 protein extracts from 94 different basidiomycete and ascomycete wild mushroom species were tested for antibacterial activity against the quarantine plant-pathogen bacterium Ralstonia solanacearum. In in vitro microtiter plate assays, 15 extracts with moderate to high antibacterial activities were identified: 11 completely inhibited bacterial growth and 4 showed partial inhibition. Of these 15 extracts, 5 were further tested and 3 extracts slowed disease progression and reduced disease severity in artificially inoculated tomato and potato plants. However, the in vitro activities of the extracts did not always correlate with their in vivo activities, which emphasizes the importance of performing early screening tests also in vivo. Testing of selected extracts against 12 R. solanacearum strains identified 6 with potential for broader applicability. Further analysis of extracts from Amanita phalloides and Clitocybe geotropa showed that the active substances are proteins with an approximate size of 180 kDa. To our knowledge, this is the first in vitro and in vivo study that demonstrates that mushroom protein extracts can be promising for treatment of bacterial wilt caused by R. solanacearum.

9.
Environ Microbiol ; 16(7): 2112-25, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24112873

RESUMEN

Erwinia amylovora causes a major disease of pome fruit trees worldwide, and is regulated as a quarantine organism in many countries. While some diversity of isolates has been observed, molecular epidemiology of this bacterium is hindered by a lack of simple molecular typing techniques with sufficiently high resolution. We report a molecular typing system of E. amylovora based on variable number of tandem repeats (VNTR) analysis. Repeats in the E. amylovora genome were identified with comparative genomic tools, and VNTR markers were developed and validated. A Multiple-Locus VNTR Analysis (MLVA) was applied to E. amylovora isolates from bacterial collections representing global and regional distribution of the pathogen. Based on six repeats, MLVA allowed the distinction of 227 haplotypes among a collection of 833 isolates of worldwide origin. Three geographically separated groups were recognized among global isolates using Bayesian clustering methods. Analysis of regional outbreaks confirmed presence of diverse haplotypes but also high representation of certain haplotypes during outbreaks. MLVA analysis is a practical method for epidemiological studies of E. amylovora, identifying previously unresolved population structure within outbreaks. Knowledge of such structure can increase our understanding on how plant diseases emerge and spread over a given geographical region.


Asunto(s)
Erwinia amylovora/clasificación , Erwinia amylovora/patogenicidad , Genoma Bacteriano , Lythraceae/microbiología , Repeticiones de Minisatélite , Técnicas de Tipificación Bacteriana , Teorema de Bayes , Erwinia amylovora/genética , Europa (Continente) , Marcadores Genéticos , Haplotipos , Medio Oriente , Epidemiología Molecular , Filogeografía , Enfermedades de las Plantas/microbiología , Estados Unidos , Virulencia
10.
Anal Biochem ; 447: 74-81, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24220292

RESUMEN

Surface plasmon resonance (SPR)-based biosensors have been widely utilized for measuring interactions of a variety of molecules. Fewer examples include higher biological entities such as bacteria and viruses, and even fewer deal with plant viruses. Here, we describe the optimization of an SPR sensor chip for evaluation of the interaction of the economically relevant filamentous Potato virus Y (PVY) with monoclonal antibodies. Different virus isolates were efficiently and stably bound to a previously immobilized polyclonal antibody surface, which remained stable over subsequent injection regeneration steps. The ability of the biosensor to detect and quantify PVY particles was compared with ELISA and RT-qPCR. Stably captured virus surfaces were successfully used to explore kinetic parameters of the interaction of a panel of monoclonal antibodies with two PVY isolates representing the main viral serotypes N and O. In addition, the optimized biosensor proved to be suitable for evaluating whether two given monoclonal antibodies compete for the same epitope within the viral particle surface. The strategy proposed in this work can help to improve existing serologic diagnostic tools that target PVY and will allow investigation of the inherent serological variability of the virus and exploration for new interactions of PVY particles with other proteins.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Potyvirus/inmunología , Potyvirus/aislamiento & purificación , Resonancia por Plasmón de Superficie/métodos , Unión Competitiva , Epítopos/inmunología , Potyvirus/química
11.
Anal Bioanal Chem ; 406(3): 661-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24276251

RESUMEN

Water contamination by viruses has an increasing worldwide impact on human health, and has led to requirements for accurate and quantitative molecular tools. Here, we report the first one-step reverse-transcription droplet digital PCR-based absolute quantification of a RNA virus (rotavirus) in different types of surface water samples. This quantification method proved to be more precise and more tolerant to inhibitory substances than the benchmarking reverse-transcription real-time PCR (RT-qPCR), and needs no standard curve. This new tool is fully amenable for the quantification of viruses in the particularly low concentrations usually found in water samples.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Virus ARN/fisiología , ARN Viral/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Microbiología del Agua
12.
Water Res ; 249: 120712, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134622

RESUMEN

Plant viruses pose a significant threat to agriculture. Several are stable outside their hosts, can enter water bodies and remain infective for prolonged periods of time. Even though the quality of irrigation water is of increasing importance in the context of plant health, the presence of plant viruses in irrigation waters is understudied. In this study, we conducted a large-scale high-throughput sequencing (HTS)-based virome analysis of irrigation and surface water sources to obtain complete information about the abundance and diversity of plant viruses in such waters. We detected nucleic acids of plant viruses from 20 families, discovered several novel plant viruses from economically important taxa, like Tobamovirus and observed the influence of the water source on the present virome. By comparing viromes of water and surrounding plants, we observed presence of plant viruses in both compartments, especially in cases of large-scale outbreaks, such as that of tomato mosaic virus. Moreover, we demonstrated that water virome data can extensively inform us about the distribution and diversity of plant viruses for which only limited information is available from plants. Overall, the results of the study provided extensive insights into the virome of irrigation waters from the perspective of plant health. It also suggested that an HTS-based water virome surveillance system could be used to detect potential plant disease outbreaks and to survey the distribution and diversity of plant viruses in the ecosystem.


Asunto(s)
Virus de Plantas , Viroma , Humanos , Ecosistema , Agua , Plantas , Filogenia
13.
J Clin Microbiol ; 51(11): 3818-25, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24025904

RESUMEN

Mammalian orthoreoviruses (MRVs) are known to cause mild enteric and respiratory infections in humans. They are widespread and infect a broad spectrum of mammals. We report here the first case of an MRV detected in a child with acute gastroenteritis, which showed the highest similarity to an MRV reported recently in European bats. An examination of a stool sample from the child was negative for most common viral and bacterial pathogens. Reovirus particles were identified by electron microscopic examination of both the stool suspension and cell culture supernatant. The whole-genome sequence was obtained with the Ion Torrent next-generation sequencing platform. Prior to sequencing, the stool sample suspension and cell culture supernatant were pretreated with nucleases and/or the convective interaction medium (CIM) monolithic chromatographic method to purify and concentrate the target viral nucleic acid. Whole-genome sequence analysis revealed that the Slovenian SI-MRV01 isolate was most similar to an MRV found in a bat in Germany. High similarity was shared in all genome segments, with nucleotide and amino acid identities between 93.8 to 99.0% and 98.4 to 99.7%, respectively. It was shown that CIM monolithic chromatography alone is an efficient method for enriching the sample in viral particles before nucleic acid isolation and next-generation sequencing application.


Asunto(s)
Gastroenteritis/virología , Orthoreovirus/clasificación , Orthoreovirus/genética , Infecciones por Reoviridae/virología , Animales , Quirópteros/virología , Análisis por Conglomerados , Heces/virología , Genoma Viral , Humanos , Lactante , Microscopía Electrónica , Datos de Secuencia Molecular , Orthoreovirus/aislamiento & purificación , Orthoreovirus de los Mamíferos/genética , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Eslovenia , Cultivo de Virus
14.
Microbiome ; 11(1): 60, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36973750

RESUMEN

BACKGROUND: In agroecosystems, viruses are well known to influence crop health and some cause phytosanitary and economic problems, but their diversity in non-crop plants and role outside the disease perspective is less known. Extensive virome explorations that include both crop and diverse weed plants are therefore needed to better understand roles of viruses in agroecosystems. Such unbiased exploration is available through viromics, which could generate biological and ecological insights from immense high-throughput sequencing (HTS) data. RESULTS: Here, we implemented HTS-based viromics to explore viral diversity in tomatoes and weeds in farming areas at a nation-wide scale. We detected 125 viruses, including 79 novel species, wherein 65 were found exclusively in weeds. This spanned 21 higher-level plant virus taxa dominated by Potyviridae, Rhabdoviridae, and Tombusviridae, and four non-plant virus families. We detected viruses of non-plant hosts and viroid-like sequences and demonstrated infectivity of a novel tobamovirus in plants of Solanaceae family. Diversities of predominant tomato viruses were variable, in some cases, comparable to that of global isolates of the same species. We phylogenetically classified novel viruses and showed links between a subgroup of phylogenetically related rhabdoviruses to their taxonomically related host plants. Ten classified viruses detected in tomatoes were also detected in weeds, which might indicate possible role of weeds as their reservoirs and that these viruses could be exchanged between the two compartments. CONCLUSIONS: We showed that even in relatively well studied agroecosystems, such as tomato farms, a large part of very diverse plant viromes can still be unknown and is mostly present in understudied non-crop plants. The overlapping presence of viruses in tomatoes and weeds implicate possible presence of virus reservoir and possible exchange between the weed and crop compartments, which may influence weed management decisions. The observed variability and widespread presence of predominant tomato viruses and the infectivity of a novel tobamovirus in solanaceous plants, provided foundation for further investigation of virus disease dynamics and their effect on tomato health. The extensive insights we generated from such in-depth agroecosystem virome exploration will be valuable in anticipating possible emergences of plant virus diseases and would serve as baseline for further post-discovery characterization studies. Video Abstract.


Asunto(s)
Virus de Plantas , Solanum lycopersicum , Viroma , Virus de Plantas/genética , Plantas
15.
Water Res ; 245: 120637, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37776590

RESUMEN

The presence of bacteria and viruses in freshwater represents a global health risk. The substantial spatial and temporal variability of microbes leads to difficulties in quantifying the risks associated with their presence in freshwater. Fine particles, including bacteria and viruses are transported and accumulated into shallow streambed (i.e., benthic) sediment, delaying the downstream transmission during baseflow conditions but contributing to their resuspension and transport downstream during stormflow events. Direct measurements of pathogen accumulation in benthic sediments are rare. Until now, the dynamic role of benthic sediment as both a store and source of microbes, has not been quantified. In this study, we analyze microbial abundance in benthic sediment along a 1 km reach of an intermittent Mediterranean stream receiving inputs from the effluent of a wastewater treatment plant, a known point source of microbes in streams. We sampled benthic sediment during a summer drought when the wastewater effluent constituted 100 % of the stream flow, and thus, large accumulation and persistence of pathogens along the streambed was expected. We measured the abundance of total bacteria, Escherichia coli (as a fecal indicator), and presence of enteric rotavirus (RoV) and norovirus (NoV). The abundance of E. coli, based on qPCR detection, was high (4.99∙102 gc /cm2) along the first 100 m downstream of the wastewater effluent input and in general decreased with distance from the source, with presence of RoV and NoV along the study reach. A particle tracking model was applied, that uses stream water velocity as an input, and accounts for microbial exchange into, immobilization, degradation, and resuspension out of benthic sediment during baseflow and stormflow. Rates of exchange into benthic sediment were 3 orders of magnitude higher during stormflow, but residence times were proportionately lower, resulting in increased longitudinal connectivity from up to downstream during stormflow. Model simulations demonstrated mechanistically how the rates of exchange into and out of the benthic sediment resulted in benthic sediment to act as a store during baseflow and a source during stormflow.


Asunto(s)
Escherichia coli , Virus , Aguas Residuales , Bacterias , Heces/microbiología , Sedimentos Geológicos/microbiología
16.
Front Plant Sci ; 14: 1187920, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332729

RESUMEN

Tomato brown rugose fruit virus (ToBRFV) has recently emerged as a major disease of tomatoes and peppers. ToBRFV is a seed- and contact-transmitted virus. In Slovenia, ToBRFV RNA was detected in samples of wastewater, river, and water used to irrigate plants. Even though the source of detected RNA could not be clearly established, this raised the question of the significance of the detection of ToBRFV in water samples and experimental studies were performed to address this question. The data presented here confirm that the release of virus particles from the roots of infected plants is a source of infectious ToBRFV particles in water and that the virus can remain infective up to four weeks in water stored at room temperature, while its RNA can be detected for much longer. These data also indicate that irrigation with ToBRFV-contaminated water can lead to plant infection. In addition, it has been shown that ToBRFV circulated in drain water in commercial tomato greenhouses from other European countries and that an outbreak of ToBRFV can be detected by regular monitoring of drain water. A simple method for concentrating ToBRFV from water samples and a comparison of the sensitivity of different methods, including the determination of the highest ToBRFV dilution still capable of infecting test plants, were also investigated. The results of our studies fill the knowledge gaps in the epidemiology and diagnosis of ToBRFV, by studying the role of water-mediated transmission, and provide a reliable risk assessment to identify critical points for monitoring and control.

17.
Environ Int ; 182: 108285, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972530

RESUMEN

Water scarcity, one of the most pressing challenges we face today, has developed for many reasons, including the increasing number of waterborne pollutants that affect the safety of the water environment. Waterborne human, animal and plant viruses represent huge health, environmental, and financial burden and thus it is important to efficiently inactivate them. Therefore, the main objective of this study was to construct a unique device combining plasma with supercavitation and to evaluate its efficiency for water decontamination with the emphasis on inactivation of viruses. High inactivation (>5 log10 PFU/mL) of bacteriophage MS2, a human enteric virus surrogate, was achieved after treatment of 0.43 L of recirculating water for up to 4 min. The key factors in the inactivation were short-lived reactive plasma species that damaged viral RNA. Water treated with plasma for a short time required for successful virus inactivation did not cause cytotoxic effects in the in vitro HepG2 cell model system or adverse effects on potato plant physiology. Therefore, the combined plasma-supercavitation device represents an environmentally-friendly technology that could provide contamination-free and safe water.


Asunto(s)
Gases em Plasma , Virus , Animales , Humanos , Agua , Gases em Plasma/farmacología , Inactivación de Virus
18.
Front Microbiol ; 14: 1181562, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323908

RESUMEN

The advances in high-throughput sequencing (HTS) technologies and bioinformatic tools have provided new opportunities for virus and viroid discovery and diagnostics. Hence, new sequences of viral origin are being discovered and published at a previously unseen rate. Therefore, a collective effort was undertaken to write and propose a framework for prioritizing the biological characterization steps needed after discovering a new plant virus to evaluate its impact at different levels. Even though the proposed approach was widely used, a revision of these guidelines was prepared to consider virus discovery and characterization trends and integrate novel approaches and tools recently published or under development. This updated framework is more adapted to the current rate of virus discovery and provides an improved prioritization for filling knowledge and data gaps. It consists of four distinct steps adapted to include a multi-stakeholder feedback loop. Key improvements include better prioritization and organization of the various steps, earlier data sharing among researchers and involved stakeholders, public database screening, and exploitation of genomic information to predict biological properties.

19.
Artículo en Inglés | MEDLINE | ID: mdl-36430072

RESUMEN

As a result of the COVID-19 pandemic, many new materials and masks came onto the market. To determine their suitability, several standards specify which properties to test, including bacterial filtration efficiency (BFE), while none describe how to determine viral filtration efficiency (VFE), a property that is particularly important in times of pandemic. Therefore, we focused our research on evaluating the suitability and efficiency of different systems for determining VFE. Here, we evaluated the VFE of 6 mask types (e.g., a surgical mask, a respirator, material for mask production, and cloth masks) with different filtration efficiencies in four experimental setups and compared the results with BFE results. The study included 17 BFE and 22 VFE experiments with 73 and 81 mask samples tested, respectively. We have shown that the masks tested had high VFE (>99% for surgical masks and respirators, ≥98% for material, and 87-97% for cloth masks) and that all experimental setups provided highly reproducible and reliable VFE results (coefficient of variation < 6%). Therefore, the VFE tests described in this study can be integrated into existing standards for mask testing.


Asunto(s)
COVID-19 , Máscaras , Humanos , Pandemias/prevención & control , COVID-19/prevención & control , Filtración , Ventiladores Mecánicos
20.
Front Microbiol ; 13: 883921, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633678

RESUMEN

High-throughput sequencing (HTS) has become an important tool for plant virus detection and discovery. Nanopore sequencing has been rapidly developing in the recent years and offers new possibilities for fast diagnostic applications of HTS. With this in mind, a study was completed, comparing the most established HTS platform (MiSeq benchtop sequencer-Illumina), with the MinION sequencer (Oxford Nanopore Technologies) for the detection of plant viruses and viroids. Method comparisons were performed on five selected samples, containing two viroids, which were sequenced using nanopore technology for the first time and 11 plant viruses with different genome organizations. For all samples, sequencing libraries for the MiSeq were prepared from ribosomal RNA-depleted total RNA (rRNA-depleted totRNA) and for MinION sequencing, direct RNA sequencing of totRNA was used. Moreover, for one of the samples, which contained five different plant viruses and a viroid, three additional variations of sample preparation for MinION sequencing were also used: direct RNA sequencing of rRNA-depleted totRNA, cDNA-PCR sequencing of totRNA, and cDNA-PCR sequencing of rRNA-depleted totRNA. Whilst direct RNA sequencing of total RNA was the quickest of the tested approaches, it was also the least sensitive: using this approach, we failed to detect only one virus that was present in a sample at an extremely low titer. All other MinION sequencing approaches showed improved performance with outcomes similar to Illumina sequencing, with cDNA-PCR sequencing of rRNA-depleted totRNA showing the best performance amongst tested nanopore MinION sequencing approaches. Moreover, when enough sequencing data were generated, high-quality consensus viral genome sequences could be reconstructed from MinION sequencing data, with high identity to the ones generated from Illumina data. The results of this study implicate that, when an appropriate sample and library preparation are selected, nanopore MinION sequencing could be used for the detection of plant viruses and viroids with similar performance as Illumina sequencing. Taken as a balance of practicality and performance, this suggests that MinION sequencing may be an ideal tool for fast and affordable virus diagnostics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA