Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Integr Neurosci ; 23(2): 29, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38419447

RESUMEN

BACKGROUND: Mitochondrial dysfunction is one of the major hallmarks of Parkinson's disease (PD). Recently, angiotensin II type 1 and type 2 receptors (AT1R, AT2R) were reported to be present on the mitochondrial membrane. Both are crucial players in the brain renin-angiotensin system (RAS). Current evidence indicates that blockade of brain AT1R protects dopaminergic neurons in PD. METHODS: Thus, the current study was aimed to explore the effects of Telmisartan (Tel), a selective AT1R blocker, on mitochondrial function and a mouse model by exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [250 mg/kg body weight (10 divided i.p. injections, each 25 mg/kg body weight at 3.5 days interval) + Probenecid 250 mg/kg]. Gait function was assessed by beam walk, and mice were euthanized on the 35th day and their brain tissues isolated for Western blot analysis. RESULTS: Pretreatment with Tel significantly protected motor functions during the beam walk in MPTP-treated mice. Tel attenuated the increased levels of AT1R, α-syn, and inflammatory markers such as inducible nitric oxide synthase (iNOS) and ionized calcium-binding adaptor molecule 1 (IBA1) in MPTP-treated mice. In addition, Tel preserved the expression of AT2R, tyrosine hydroxylase (TH), p-Akt/Akt, and p-GSK3ß (Ser-9)/GSK3ß, as well as protecting mitofusin protein 1 (MFN1) and Peroxisome proliferator-activated receptor-gamma coactivator-α (PGC1α), a critical activator of mitochondrial biogenesis. CONCLUSION: These results indicate that Tel protects mitochondrial function and gait in a mouse model of PD by modulating the Akt/GSK3ß/PGC1α pathway.


Asunto(s)
Enfermedad de Parkinson , Animales , Ratones , Telmisartán/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas Proto-Oncogénicas c-akt , Glucógeno Sintasa Quinasa 3 beta , Marcha , Apoptosis , Mitocondrias , Peso Corporal , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
2.
Pharmacol Res ; 160: 105078, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32673703

RESUMEN

Phosphodiesterases (PDE) are a diverse family of enzymes (11 isoforms so far identified) responsible for the degradation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which are involved in several cellular and biochemical functions. Phosphodiesterase 4 (PDE4) is the major isoform within this group and is highly expressed in the mammalian brain. An inverse association between PDE4 and cAMP levels is the key mechanism in various pathophysiological conditions like airway inflammatory diseases-chronic obstruction pulmonary disease (COPD), asthma, psoriasis, rheumatoid arthritis, and neurological disorders etc. In 2011, roflumilast, a PDE4 inhibitor (PDE4I) was approved for the treatment of COPD. Subsequently, other PDE4 inhibitors (PDE4Is) like apremilast and crisaborole were approved by the Food and Drug Administration (FDA) for psoriasis, atopic dermatitis etc. Due to the adverse effects like unbearable nausea and vomiting, dose intolerance and diarrhoea, PDE4 inhibitors have very less clinical compliance. Efforts are being made to develop allosteric modulation with high specificity to PDE4 isoforms having better efficacy and lesser adverse effects. Interestingly, repositioning PDE4Is towards neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and sleep disorders, is gaining attention. This review is an attempt to summarize the data on the effects of PDE4 overexpression in neurological disorders and the use of PDE4Is and newer allosteric modulators as therapeutic options. We have also compiled a list of on-going clinical trials on PDE4 inhibitors in neurological disorders.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Regulación Alostérica , Animales , Sistema Nervioso Central/enzimología , Sistema Nervioso Central/fisiopatología , AMP Cíclico/metabolismo , Humanos , Terapia Molecular Dirigida , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/fisiopatología , Plasticidad Neuronal/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/efectos adversos , Transducción de Señal
3.
Nutr Neurosci ; 23(6): 471-480, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30207204

RESUMEN

Polyphenols are shown to protect from or delay the progression of chronic neurodegenerative diseases. Mitochondrial dysfunction plays a key role in the pathogenesis of Parkinson's disease (PD). This study was aims to gain insight into the role of ahydroalcoholic extract of cocoa (standardised for epicatechin content) on mitochondrial biogenesis in MPP+ intoxicated human neuroblastoma cells (SHSY5Y). The effects of cocoa on PPARγ, PGC1α, Nrf2 and TFAM protein expression and mitochondrial membrane potential were evaluated. A pre-exposure to cocoa extract decreased reactive oxygen species formation and restored mitochondrial membrane potential. The cocoa extract was found to up-regulate the expression of PPARγ and the downstream signalling proteins PGC1α, Nrf2 and TFAM. It increased the expression of the anti-apoptotic protein BCl2 and increased superoxide dismutase activity. Further, the cocoa extract down-regulated the expression of mitochondria fission 1 (Fis1) and up-regulated the expression of mitochondria fusion 2 (Mfn2) proteins, suggesting an improvement in mitochondrial functions in MPP+ intoxicated cells upon treatment with cocoa. Interestingly, cocoa up-regulates the expression of tyrosine hydroxylase, the rate limiting enzyme in dopamine synthesis. No change in the expression of PPARγ on treatment with cocoa extract was observed when the cells were pre-treated with PPARγ antagonist GW9662. This data suggests that cocoa mediates mitochondrial biogenesis via a PPARγ/PGC1α dependent signalling pathway and also has the ability to improve dopaminergic functions by increasing tyrosine hydroxylase expression. Based on our data, we propose that a cocoa bean extract and products thereof could be used as potential nutritional supplements for neuroprotection in PD.


Asunto(s)
Cacao , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Biogénesis de Organelos , PPAR gamma/metabolismo , Enfermedad de Parkinson/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Extractos Vegetales/administración & dosificación , Línea Celular Tumoral , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Enfermedad de Parkinson/prevención & control , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Cells ; 13(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38891060

RESUMEN

Mitochondrial aldehyde dehydrogenase-2 (ALDH2) metabolizes acetaldehyde to acetate. People with ALDH2 deficiency and Aldh2-knockout (KO) mice are more susceptible to alcohol-induced tissue damage. However, the underlying mechanisms behind ALDH2-related gut-associated brain damage remain unclear. Age-matched young female Aldh2-KO and C57BL/6J wild-type (WT) mice were gavaged with binge alcohol (4 g/kg/dose, three doses) or dextrose (control) at 12 h intervals. Tissues and sera were collected 1 h after the last ethanol dose and evaluated by histological and biochemical analyses of the gut and hippocampus and their extracts. For the mechanistic study, mouse neuroblast Neuro2A cells were exposed to ethanol with or without an Aldh2 inhibitor (Daidzin). Binge alcohol decreased intestinal tight/adherens junction proteins but increased oxidative stress-mediated post-translational modifications (PTMs) and enterocyte apoptosis, leading to elevated gut leakiness and endotoxemia in Aldh2-KO mice compared to corresponding WT mice. Alcohol-exposed Aldh2-KO mice also showed higher levels of hippocampal brain injury, oxidative stress-related PTMs, and neuronal apoptosis than the WT mice. Additionally, alcohol exposure reduced Neuro2A cell viability with elevated oxidative stress-related PTMs and apoptosis, all of which were exacerbated by Aldh2 inhibition. Our results show for the first time that ALDH2 plays a protective role in binge alcohol-induced brain injury partly through the gut-brain axis, suggesting that ALDH2 is a potential target for attenuating alcohol-induced tissue injury.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial , Consumo Excesivo de Bebidas Alcohólicas , Lesiones Encefálicas , Tracto Gastrointestinal , Animales , Femenino , Ratones , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Aldehído Deshidrogenasa Mitocondrial/genética , Apoptosis/efectos de los fármacos , Consumo Excesivo de Bebidas Alcohólicas/patología , Lesiones Encefálicas/patología , Lesiones Encefálicas/metabolismo , Etanol/farmacología , Etanol/toxicidad , Hipocampo/patología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Tracto Gastrointestinal/lesiones , Tracto Gastrointestinal/metabolismo
5.
Cells ; 11(7)2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35406804

RESUMEN

Recent research on the gut microbiome has revealed the influence of gut microbiota (GM) on ischemic stroke pathogenesis and treatment outcomes. Alterations in the diversity, abundance, and functions of the gut microbiome, termed gut dysbiosis, results in dysregulated gut-brain signaling, which induces intestinal barrier changes, endotoxemia, systemic inflammation, and infection, affecting post-stroke outcomes. Gut-brain interactions are bidirectional, and the signals from the gut to the brain are mediated by microbially derived metabolites, such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs); bacterial components, such as lipopolysaccharide (LPS); immune cells, such as T helper cells; and bacterial translocation via hormonal, immune, and neural pathways. Ischemic stroke affects gut microbial composition via neural and hypothalamic-pituitary-adrenal (HPA) pathways, which can contribute to post-stroke outcomes. Experimental and clinical studies have demonstrated that the restoration of the gut microbiome usually improves stroke treatment outcomes by regulating metabolic, immune, and inflammatory responses via the gut-brain axis (GBA). Therefore, restoring healthy microbial ecology in the gut may be a key therapeutic target for the effective management and treatment of ischemic stroke.


Asunto(s)
Microbioma Gastrointestinal , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Disbiosis/complicaciones , Ácidos Grasos Volátiles , Microbioma Gastrointestinal/fisiología , Humanos , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/terapia
6.
Cells ; 11(8)2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35456041

RESUMEN

Depression is a highly common mental disorder, which is often multifactorial with sex, genetic, environmental, and/or psychological causes. Recent advancements in biomedical research have demonstrated a clear correlation between gut dysbiosis (GD) or gut microbial dysbiosis and the development of anxiety or depressive behaviors. The gut microbiome communicates with the brain through the neural, immune, and metabolic pathways, either directly (via vagal nerves) or indirectly (via gut- and microbial-derived metabolites as well as gut hormones and endocrine peptides, including peptide YY, pancreatic polypeptide, neuropeptide Y, cholecystokinin, corticotropin-releasing factor, glucagon-like peptide, oxytocin, and ghrelin). Maintaining healthy gut microbiota (GM) is now being recognized as important for brain health through the use of probiotics, prebiotics, synbiotics, fecal microbial transplantation (FMT), etc. A few approaches exert antidepressant effects via restoring GM and hypothalamus-pituitary-adrenal (HPA) axis functions. In this review, we have summarized the etiopathogenic link between gut dysbiosis and depression with preclinical and clinical evidence. In addition, we have collated information on the recent therapies and supplements, such as probiotics, prebiotics, short-chain fatty acids, and vitamin B12, omega-3 fatty acids, etc., which target the gut-brain axis (GBA) for the effective management of depressive behavior and anxiety.


Asunto(s)
Trastorno Depresivo Mayor , Simbióticos , Depresión , Disbiosis/metabolismo , Humanos , Prebióticos
7.
Pharmacol Ther ; 231: 107988, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34536490

RESUMEN

The human microbiota comprises trillions of symbiotic microorganisms and is involved in regulating gastrointestinal (GI), immune, nervous system and metabolic homeostasis. Recent observations suggest a bidirectional communication between the gut microbiota and the brain via immune, circulatory and neural pathways, termed the Gut-Brain Axis (GBA). Alterations in gut microbiota composition, such as seen with an increased number of pathobionts and a decreased number of symbionts, termed gut dysbiosis or microbial intestinal dysbiosis, plays a prominent role in the pathogenesis of central nervous system (CNS)-related disorders. Clinical reports confirm that GI symptoms often precede neurological symptoms several years before the development of neurodegenerative diseases (NDDs). Pathologically, gut dysbiosis disrupts the integrity of the intestinal barrier leading to ingress of pathobionts and toxic metabolites into the systemic circulation causing GBA dysregulation. Subsequently, chronic neuroinflammation via dysregulated immune activation triggers the accumulation of neurotoxic misfolded proteins in and around CNS cells resulting in neuronal death. Emerging evidence links gut dysbiosis to the aggravation and/or spread of proteinopathies from the peripheral nervous system to the CNS and defective autophagy-mediated proteinopathies. This review summarizes the current understanding of the role of gut microbiota in NDDs, and highlights a vicious cycle of gut dysbiosis, immune-mediated chronic neuroinflammation, impaired autophagy and proteinopathies, which contributes to the development of neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We also discuss novel therapeutic strategies targeting the modulation of gut dysbiosis through prebiotics, probiotics, synbiotics or dietary interventions, and faecal microbial transplantation (FMT) in the management of NDDs.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Autofagia , Encéfalo/metabolismo , Disbiosis/metabolismo , Disbiosis/patología , Disbiosis/terapia , Microbioma Gastrointestinal/fisiología , Humanos , Inmunidad , Enfermedades Neurodegenerativas/metabolismo
8.
Cells ; 11(24)2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36552802

RESUMEN

Lipopolysaccharide (LPS) is a cell-wall immunostimulatory endotoxin component of Gram-negative bacteria. A growing body of evidence reveals that alterations in the bacterial composition of the intestinal microbiota (gut dysbiosis) disrupt host immune homeostasis and the intestinal barrier function. Microbial dysbiosis leads to a proinflammatory milieu and systemic endotoxemia, which contribute to the development of neurodegenerative diseases and metabolic disorders. Two important pathophysiological hallmarks of neurodegenerative diseases (NDDs) are oxidative/nitrative stress and inflammation, which can be initiated by elevated intestinal permeability, with increased abundance of pathobionts. These changes lead to excessive release of LPS and other bacterial products into blood, which in turn induce chronic systemic inflammation, which damages the blood-brain barrier (BBB). An impaired BBB allows the translocation of potentially harmful bacterial products, including LPS, and activated neutrophils/leucocytes into the brain, which results in neuroinflammation and apoptosis. Chronic neuroinflammation causes neuronal damage and synaptic loss, leading to memory impairment. LPS-induced inflammation causes inappropriate activation of microglia, astrocytes, and dendritic cells. Consequently, these alterations negatively affect mitochondrial function and lead to increases in oxidative/nitrative stress and neuronal senescence. These cellular changes in the brain give rise to specific clinical symptoms, such as impairment of locomotor function, muscle weakness, paralysis, learning deficits, and dementia. This review summarizes the contributing role of LPS in the development of neuroinflammation and neuronal cell death in various neurodegenerative diseases.


Asunto(s)
Lipopolisacáridos , Enfermedades Neurodegenerativas , Humanos , Lipopolisacáridos/efectos adversos , Enfermedades Neuroinflamatorias , Disbiosis , Inflamación
9.
Front Biosci (Landmark Ed) ; 26(8): 262-271, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34455758

RESUMEN

Background: Mitochondrial dysfunction plays a crucial role in Parkinson's disease (PD) pathogenesis. The present study was undertaken to investigate the effects of Telmisartan (TEL), an angiotensin II type 1 receptor (AT1R) blocker, on the mitochondria-specific genes expression in a mouse model of Parkinsonism. Materials and methods: Mice were divided into 5 groups with 6 in each; Group I received 0.5% CMC (control) + saline, Group II received 0.5% CMC + 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (positive control), Group III & IV received MPTP + TEL 3 and 10 mg/kg, p.o. respectively, Group V received TEL 10 mg/kg, p.o. (drug control). MPTP was given 80 mg/kg intraperitoneal in two divided doses (40 mg/kg × 2 at 16 h time interval). Vehicle or TEL was administered 1 h before the MPTP injection. Motor function was assessed 48 h after the first dose of MPTP and animals were euthanized to collect brain. Results: Mice intoxicated with MPTP showed locomotor deficits and significant upregulation of α-synuclein (α-syn), downregulation of metastasis-associated protein 1 (MTA1), and Ubiquitin C-terminal hydrolase L1 (UCHL1) in the substantia nigra pars compacta (SNpc) and Striatum (STr) regions of brains. In addition, MPTP intoxication down-regulated mitochondria-specific genes such as DJ-1, PTEN-induced putative kinase 1 (PINK1), Parkin, enriched with leucine repeats kinase 2 (LRRK2) gene expfression. Pre-treatment with TEL restored locomotor functions and upregulated PINK1, Parkin, LRRK2, DJ-1, MTA1 and UCHL1. Conclusion: The present study evidences that TEL has the ability to improve mitochondrial functions in PD.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Genes Mitocondriales , Trastornos Parkinsonianos , Telmisartán/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Mitocondrias , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/genética , Receptor de Angiotensina Tipo 1
10.
Front Biosci (Landmark Ed) ; 26(6): 114-124, 2021 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-34162040

RESUMEN

Sleep deprivation (SD) is commonly associated with decreased attention, reduced responsiveness to external stimuli, and impaired locomotor and cognitive performances. Strong evidence indicates that SD disrupts neuro-immuno-endocrine system which is also linked to cognitive function. Recently Zebrafish have emerged as a powerful model sharing organizational and functional characteristics with other vertebrates, providing great translational relevance with rapid and reliable screening results. In the current study, we examined the effects of acetylsalicylic acid (aspirin) on cognitive and locomotor activity in sleep deprived Zebrafish model. Learning and memory were assessed by T-maze and locomotor activity was assessed by partition preference and swimming time in spinning tasks. Furthermore, brain bioavailability of aspirin was determined by high performance liquid chromatography. Following drug exposure and tasks, histopathology of the brain was performed. It was observed that three-day SD significantly reduces learning and memory and locomotion in the Zebrafish. Aspirin was found to restore SD induced cognitive decline and improve the locomotor functions. Neuro-inflammation and impaired functional network connectivity is linked to cognitive defects, which implicate the possible benefits of immunotherapeutics. In the present study, aspirin decreased neutrophil infiltration, and increased spine density in dentate gyrus granular and shrinkage and basophil in the CA1 neurons of hippocampus. This hints the benefit of aspirin on neuroimmune functions in sleep deprived fish and warrants more studies to establish the clear molecular mechanism behind this protective effect.


Asunto(s)
Aspirina/farmacología , Cognición/efectos de los fármacos , Privación de Sueño , Animales , Aspirina/farmacocinética , Aspirina/toxicidad , Disponibilidad Biológica , Masculino , Natación , Pruebas de Toxicidad Aguda , Pez Cebra
11.
Front Cell Dev Biol ; 9: 673395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124057

RESUMEN

Parkinson's disease (PD) is a pathological condition characterized by the aggregation and the resultant presence of intraneuronal inclusions termed Lewy bodies (LBs) and Lewy neurites which are mainly composed of fibrillar α-synuclein (α-syn) protein. Pathogenic aggregation of α-syn is identified as the major cause of LBs deposition. Several mutations in α-syn showing varied aggregation kinetics in comparison to the wild type (WT) α-syn are reported in PD (A30P, E46K, H 50Q, G51D, A53E, and A53T). Also, the cell-to-cell spread of pathological α-syn plays a significant role in PD development. Interestingly, it has also been suggested that the pathology of PD may begin in the gastrointestinal tract and spread via the vagus nerve (VN) to brain proposing the gut-brain axis of α-syn pathology in PD. Despite multiple efforts, the behavior and functions of this protein in normal and pathological states (specifically in PD) is far from understood. Furthermore, the etiological factors responsible for triggering aggregation of this protein remain elusive. This review is an attempt to collate and present latest information on α-syn in relation to its structure, biochemistry and biophysics of aggregation in PD. Current advances in therapeutic efforts toward clearing the pathogenic α-syn via autophagy/lysosomal flux are also reviewed and reported.

12.
ASN Neuro ; 13: 17590914211028364, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34304614

RESUMEN

Mitochondrial dysfunction is a well-established pathological event in Parkinson's disease (PD). Proteins misfolding and its impaired cellular clearance due to altered autophagy/mitophagy/pexophagy contribute to PD progression. It has been shown that mitochondria have contact sites with endoplasmic reticulum (ER), peroxisomes and lysosomes that are involved in regulating various physiological processes. In pathological conditions, the crosstalk at the contact sites initiates alterations in intracellular vesicular transport, calcium homeostasis and causes activation of proteases, protein misfolding and impairment of autophagy. Apart from the well-reported molecular changes like mitochondrial dysfunction, impaired autophagy/mitophagy and oxidative stress in PD, here we have summarized the recent scientific reports to provide the mechanistic insights on the altered communications between ER, peroxisomes, and lysosomes at mitochondrial contact sites. Furthermore, the manuscript elaborates on the contributions of mitochondrial contact sites and organelles dysfunction to the pathogenesis of PD and suggests potential therapeutic targets.


Asunto(s)
Enfermedad de Parkinson , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/metabolismo , Mitofagia , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo
13.
Biomolecules ; 11(11)2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34827667

RESUMEN

The past few decades have seen an increased emphasis on the involvement of the mitochondrial-associated membrane (MAM) in various neurodegenerative diseases, particularly in Parkinson's disease (PD) and Alzheimer's disease (AD). In PD, alterations in mitochondria, endoplasmic reticulum (ER), and MAM functions affect the secretion and metabolism of proteins, causing an imbalance in calcium homeostasis and oxidative stress. These changes lead to alterations in the translocation of the MAM components, such as IP3R, VDAC, and MFN1 and 2, and consequently disrupt calcium homeostasis and cause misfolded proteins with impaired autophagy, distorted mitochondrial dynamics, and cell death. Various reports indicate the detrimental involvement of the brain renin-angiotensin system (RAS) in oxidative stress, neuroinflammation, and apoptosis in various neurodegenerative diseases. In this review, we attempted to update the reports (using various search engines, such as PubMed, SCOPUS, Elsevier, and Springer Nature) demonstrating the pathogenic interactions between the various proteins present in mitochondria, ER, and MAM with respect to Parkinson's disease. We also made an attempt to speculate the possible involvement of RAS and its components, i.e., AT1 and AT2 receptors, angiotensinogen, in this crosstalk and PD pathology. The review also collates and provides updated information on the role of MAM in calcium signaling, oxidative stress, neuroinflammation, and apoptosis in PD.


Asunto(s)
Sistema Renina-Angiotensina , Retículo Endoplásmico , Humanos , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson
14.
Cells ; 10(12)2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34943913

RESUMEN

Dendritic spines are small, thin, hair-like protrusions found on the dendritic processes of neurons. They serve as independent compartments providing large amplitudes of Ca2+ signals to achieve synaptic plasticity, provide sites for newer synapses, facilitate learning and memory. One of the common and severe complication of neurodegenerative disease is cognitive impairment, which is said to be closely associated with spine pathologies viz., decreased in spine density, spine length, spine volume, spine size etc. Many treatments targeting neurological diseases have shown to improve the spine structure and distribution. However, concise data on the various modulators of dendritic spines are imperative and a need of the hour. Hence, in this review we made an attempt to consolidate the effects of various pharmacological (cholinergic, glutamatergic, GABAergic, serotonergic, adrenergic, and dopaminergic agents) and non-pharmacological modulators (dietary interventions, enriched environment, yoga and meditation) on dendritic spines structure and functions. These data suggest that both the pharmacological and non-pharmacological modulators produced significant improvement in dendritic spine structure and functions and in turn reversing the pathologies underlying neurodegeneration. Intriguingly, the non-pharmacological approaches have shown to improve intellectual performances both in preclinical and clinical platforms, but still more technology-based evidence needs to be studied. Thus, we conclude that a combination of pharmacological and non-pharmacological intervention may restore cognitive performance synergistically via improving dendritic spine number and functions in various neurological disorders.


Asunto(s)
Espinas Dendríticas/efectos de los fármacos , Dieta , Enfermedades Neurodegenerativas/dietoterapia , Enfermedades Neurodegenerativas/tratamiento farmacológico , Colinérgicos/uso terapéutico , Disfunción Cognitiva/dietoterapia , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/psicología , Espinas Dendríticas/patología , Espinas Dendríticas/fisiología , Fármacos actuantes sobre Aminoácidos Excitadores/uso terapéutico , GABAérgicos/uso terapéutico , Humanos , Meditación/psicología , Enfermedades Neurodegenerativas/epidemiología , Enfermedades Neurodegenerativas/psicología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Yoga/psicología
15.
Immun Inflamm Dis ; 9(1): 48-58, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33332737

RESUMEN

BACKGROUND: Although coronavirus disease 2019 (COVID-19) has been associated primarily with pneumonia, recent data show that the causative agent of COVID-19, the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can infect a large number of vital organs beyond the lungs, such as the heart, kidneys, and the brain. Thus, there is evidence showing possible retrograde transmission of the virus from the olfactory epithelium to regions of the brain stem. METHODS: This is a literature review article. The research design method is an evidence-based rapid review. The present discourse aim is first to scrutinize and assess the available literature on COVID-19 repercussion on the central nervous system (CNS). Standard literature and database searches were implemented, gathered relevant material, and extracted information was then assessed. RESULTS: The angiotensin-converting enzyme 2 (ACE2) receptors being the receptor for the virus, the threat to the central nervous system is expected. Neurons and glial cells express ACE2 receptors in the CNS, and recent studies suggest that activated glial cells contribute to neuroinflammation and the devastating effects of SARS-CoV-2 infection on the CNS. The SARS-CoV-2-induced immune-mediated demyelinating disease, cerebrovascular damage, neurodegeneration, and depression are some of the neurological complications discussed here. CONCLUSION: This review correlates present clinical manifestations of COVID-19 patients with possible neurological consequences in the future, thus preparing healthcare providers for possible future consequences of COVID-19.


Asunto(s)
COVID-19/complicaciones , COVID-19/virología , Enfermedades del Sistema Nervioso/etiología , SARS-CoV-2/fisiología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encéfalo/virología , COVID-19/inmunología , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno , Humanos , Sistema Nervioso/metabolismo , Sistema Nervioso/fisiopatología , Sistema Nervioso/virología , Enfermedades del Sistema Nervioso/diagnóstico
16.
Adv Neurobiol ; 24: 573-586, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32006374

RESUMEN

Autism is a developmental disorder that affects communication and behavior. Although autism can be diagnosed at any age, it is said to be a "developmental disorder" because symptoms generally appear in the first 2 years of life. The primary cause of autism is still not clear and therapy is currently restricted to controlling behavioral abnormalities. However, emerging studies have shown a link between mitochondrial dysfunction and autism. Dietary supplements that promote mitochondrial biogenesis and inhibit the production of oxidative stress have been used to treat autism patients. Dietary adjustments in treating autism is a novel approach to suppress autistic symptoms. Supplementation with antioxidants has been found to not only inhibit cognitive decline but also improve behavioral symptoms in autism. Dietary supplements fortified with vitamins should only be given under the supervision of a physician. A wide range of nutraceuticals are under clinical trials to understand whether they physiologically target mitochondrial pathways and improve the quality of life in autism.


Asunto(s)
Trastorno Autístico/dietoterapia , Dietoterapia , Proteínas en la Dieta/uso terapéutico , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Suplementos Dietéticos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Estrés Oxidativo/efectos de los fármacos , Calidad de Vida
17.
Adv Neurobiol ; 24: 587-600, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32006375

RESUMEN

Characterized by a wide range of behavioural, social and language problems, autism is a complex developmental disability that affects an individual's capacity to communicate and interact with others. Although the real causes that lead to the development of autism are still unclear, the gastrointestinal tract has been found to play a major role in the development of autism. Alterations in macrobiotic compositions have been reported in autistic children. Irregularities in carbohydrate digestion and absorption could also explain some of the gastrointestinal problems reported in autistic patients, although their role in the neurological and behavioural problems remains uncertain. A relationship between improved gut health and decrease of symptoms in autism has been reported as well. Studies done to evaluate the gluten-free diets, casein-free diets, pre- and probiotic and multivitamin supplementation have shown promising results. Probiotics have been thought to alleviate the progression of autism and reduce cognitive and behavioural deficits.


Asunto(s)
Trastorno Autístico/dietoterapia , Encéfalo/fisiopatología , Tracto Gastrointestinal/fisiopatología , Probióticos/uso terapéutico , Trastorno Autístico/metabolismo , Trastorno Autístico/psicología , Carbohidratos de la Dieta/metabolismo , Humanos
18.
Geroscience ; 42(5): 1257-1283, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32748314

RESUMEN

Sleep maintains the function of the entire body through homeostasis. Chronic sleep deprivation (CSD) is a prime health concern in the modern world. Previous reports have shown that CSD has profound negative effects on brain vasculature at both the cellular and molecular levels, and that this is a major cause of cognitive dysfunction and early vascular ageing. However, correlations among sleep deprivation (SD), brain vascular changes and ageing have barely been looked into. This review attempts to correlate the alterations in the levels of major neurotransmitters (acetylcholine, adrenaline, GABA and glutamate) and signalling molecules (Sirt1, PGC1α, FOXO, P66shc, PARP1) in SD and changes in brain vasculature, cognitive dysfunction and early ageing. It also aims to connect SD-induced loss in the number of dendritic spines and their effects on alterations in synaptic plasticity, cognitive disabilities and early vascular ageing based on data available in scientific literature. To the best of our knowledge, this is the first article providing a pathophysiological basis to link SD to brain vascular ageing.


Asunto(s)
Privación de Sueño , Sueño , Encéfalo , Humanos , Plasticidad Neuronal
19.
Biomed Res Int ; 2020: 5764017, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381558

RESUMEN

Sleep plays an important role in maintaining neuronal circuitry, signalling and helps maintain overall health and wellbeing. Sleep deprivation (SD) disturbs the circadian physiology and exerts a negative impact on brain and behavioural functions. SD impairs the cellular clearance of misfolded neurotoxin proteins like α-synuclein, amyloid-ß, and tau which are involved in major neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. In addition, SD is also shown to affect the glymphatic system, a glial-dependent metabolic waste clearance pathway, causing accumulation of misfolded faulty proteins in synaptic compartments resulting in cognitive decline. Also, SD affects the immunological and redox system resulting in neuroinflammation and oxidative stress. Hence, it is important to understand the molecular and biochemical alterations that are the causative factors leading to these pathophysiological effects on the neuronal system. This review is an attempt in this direction. It provides up-to-date information on the alterations in the key processes, pathways, and proteins that are negatively affected by SD and become reasons for neurological disorders over a prolonged period of time, if left unattended.


Asunto(s)
Enfermedades del Sistema Nervioso/complicaciones , Neuronas/metabolismo , Privación de Sueño/complicaciones , Sueño/fisiología , Enfermedad de Alzheimer/complicaciones , Animales , Mapeo Encefálico , Epilepsia/complicaciones , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genómica , Sistema Glinfático/metabolismo , Humanos , Enfermedad de Huntington/complicaciones , Sistema Inmunológico , Aprendizaje , Memoria , Esclerosis Múltiple/complicaciones , Oxidación-Reducción , Estrés Oxidativo , Enfermedad de Parkinson/complicaciones
20.
Biofactors ; 45(5): 666-689, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31185140

RESUMEN

Curcumin is widely consumed in Asia either as turmeric directly or as one of the culinary ingredients in food recipes. The benefits of curcumin in different organ systems have been reported extensively in several neurological diseases and cancer. Curcumin has got its global recognition because of its strong antioxidant, anti-inflammatory, anti-cancer, and antimicrobial activities. Additionally, it is used in diabetes and arthritis as well as in hepatic, renal, and cardiovascular diseases. Recently, there is growing attention on usage of curcumin to prevent or delay the onset of neurodegenerative diseases. This review summarizes available data from several recent studies on curcumin in various neurological diseases such as Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Huntington's disease, Prions disease, stroke, Down's syndrome, autism, Amyotrophic lateral sclerosis, anxiety, depression, and aging. Recent advancements toward increasing the therapeutic efficacy of curcuma/curcumin formulation and the novel delivery strategies employed to overcome its minimal bioavailability and toxicity studies have also been discussed. This review also summarizes the ongoing clinical trials on curcumin for different neurodegenerative diseases and patent details of curcuma/curcumin in India.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Curcumina/farmacología , Demencia/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Ansiedad/fisiopatología , Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/metabolismo , Trastorno Autístico/fisiopatología , Disponibilidad Biológica , Curcuma/química , Curcumina/aislamiento & purificación , Demencia/metabolismo , Demencia/fisiopatología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Depresión/fisiopatología , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/fisiopatología , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/fisiopatología , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/fisiopatología , Fármacos Neuroprotectores/aislamiento & purificación , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Patentes como Asunto , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/metabolismo , Enfermedades por Prión/fisiopatología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA