Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Alzheimers Dement ; 20(8): 5247-5261, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38958117

RESUMEN

INTRODUCTION: Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. METHODS: Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. RESULTS: A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, p = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. DISCUSSION: These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. HIGHLIGHTS: Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at p < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.


Asunto(s)
Enfermedad de Alzheimer , Población Negra , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/etnología , Predisposición Genética a la Enfermedad/genética , Población Negra/genética , Polimorfismo de Nucleótido Simple/genética , Femenino , Masculino , Anciano
2.
Alzheimers Dement ; 19(9): 4187-4195, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37390458

RESUMEN

INTRODUCTION: Sequencing efforts to identify genetic variants and pathways underlying Alzheimer's disease (AD) have largely focused on late-onset AD although early-onset AD (EOAD), accounting for ∼10% of cases, is largely unexplained by known mutations, resulting in a lack of understanding of its molecular etiology. METHODS: Whole-genome sequencing and harmonization of clinical, neuropathological, and biomarker data of over 5000 EOAD cases of diverse ancestries. RESULTS: A publicly available genomics resource for EOAD with extensive harmonized phenotypes. Primary analysis will (1) identify novel EOAD risk loci and druggable targets; (2) assess local-ancestry effects; (3) create EOAD prediction models; and (4) assess genetic overlap with cardiovascular and other traits. DISCUSSION: This novel resource complements over 50,000 control and late-onset AD samples generated through the Alzheimer's Disease Sequencing Project (ADSP). The harmonized EOAD/ADSP joint call will be available through upcoming ADSP data releases and will allow for additional analyses across the full onset range. HIGHLIGHTS: Sequencing efforts to identify genetic variants and pathways underlying Alzheimer's disease (AD) have largely focused on late-onset AD although early-onset AD (EOAD), accounting for ∼10% of cases, is largely unexplained by known mutations. This results in a significant lack of understanding of the molecular etiology of this devastating form of the disease. The Early-Onset Alzheimer's Disease Whole-genome Sequencing Project is a collaborative initiative to generate a large-scale genomics resource for early-onset Alzheimer's disease with extensive harmonized phenotype data. Primary analyses are designed to (1) identify novel EOAD risk and protective loci and druggable targets; (2) assess local-ancestry effects; (3) create EOAD prediction models; and (4) assess genetic overlap with cardiovascular and other traits. The harmonized genomic and phenotypic data from this initiative will be available through NIAGADS.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Mutación/genética , Edad de Inicio
3.
Alzheimers Dement (Amst) ; 16(3): e70000, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39183746

RESUMEN

INTRODUCTION: Neuropsychiatric symptoms (NPS) are highly prevalent in Alzheimer's disease (AD). There are no effective treatments targeting these symptoms. METHODS: To facilitate identification of causative mechanistic pathways, we initiated an effort (NIH: U01AG079850) to collate, harmonize, and analyze all available NPS data (≈ 100,000 samples) of diverse ancestries with whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP). RESULTS: This study will generate a genomic resource for Alzheimer's disease with both harmonized whole-genome sequencing and NPS phenotype data that will be publicly available through NIAGADS. Primary analyses will (1) identify novel genetic risk factors associated with NPS in AD, (2) characterize the shared genetic architecture of NPS in AD and primary psychiatric disorders, and (3) assess the role of ancestry effects in the etiology of NPS in AD. DISCUSSION: Expansion of the ADSP to harmonize and refine NPS phenotypes coupled with the proposed core analyses will lay the foundation to disentangle the molecular mechanisms underlying these detrimental symptoms in AD in diverse populations. Highlights: Neuropsychiatric symptoms (NPS) are highly prevalent in Alzheimer's disease (AD).There are no effective treatments targeting NPS in AD.The current effort aims to collate, harmonize, and analyze all NPS data from the Alzheimer's Disease Sequencing Project.Core analyses will identify underlying genetic factors and mechanistic pathways.The harmonized genomic and phenotypic data from this initiative will be available through National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38686621

RESUMEN

OBJECTIVES: Cognitive training (CT) has been investigated as a means of delaying age-related cognitive decline in older adults. However, its impact on biomarkers of age-related structural brain atrophy has rarely been investigated, leading to a gap in our understanding of the linkage between improvements in cognition and brain plasticity. This study aimed to explore the impact of CT on cognitive performance and brain structure in older adults. METHODS: One hundred twenty-four cognitively normal older adults recruited from 2 study sites were randomly assigned to either an adaptive CT (n = 60) or a casual game training (active control, AC, n = 64). RESULTS: After 10 weeks of training, CT participants showed greater improvements in the overall cognitive composite score (Cohen's d = 0.66, p < .01) with nonsignificant benefits after 6 months from the completion of training (Cohen's d = 0.36, p = .094). The CT group showed significant maintenance of the caudate volume as well as significant maintained fractional anisotropy in the left internal capsule and in left superior longitudinal fasciculus compared to the AC group. The AC group displayed an age-related decrease in these metrics of brain structure. DISCUSSION: Results from this multisite clinical trial demonstrate that the CT intervention improves cognitive performance and helps maintain caudate volume and integrity of white matter regions that are associated with cognitive control, adding to our understanding of the changes in brain structure contributing to changes in cognitive performance from adaptive CT. CLINICAL TRIAL REGISTRATION: NCT03197454.


Asunto(s)
Encéfalo , Humanos , Masculino , Anciano , Femenino , Encéfalo/diagnóstico por imagen , Envejecimiento/fisiología , Envejecimiento/psicología , Envejecimiento/patología , Cognición/fisiología , Atrofia , Biomarcadores , Disfunción Cognitiva/diagnóstico por imagen , Terapia Cognitivo-Conductual/métodos , Imagen por Resonancia Magnética , Envejecimiento Cognitivo/fisiología , Envejecimiento Cognitivo/psicología , Plasticidad Neuronal/fisiología , Entrenamiento Cognitivo
5.
medRxiv ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37693582

RESUMEN

INTRODUCTION: Despite a two-fold increased risk, individuals of African ancestry have been significantly underrepresented in Alzheimer's Disease (AD) genomics efforts. METHODS: GWAS of 2,903 AD cases and 6,265 cognitive controls of African ancestry. Within-dataset results were meta-analyzed, followed by gene-based and pathway analyses, and analysis of RNAseq and whole-genome sequencing data. RESULTS: A novel AD risk locus was identified in MPDZ on chromosome 9p23 (rs141610415, MAF=.002, P =3.68×10 -9 ). Two additional novel common and nine novel rare loci approached genome-wide significance at P <9×10 -7 . Comparison of association and LD patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 ( ASCL1 ), suggesting that the association is modulated by regional origin of local African ancestry. DISCUSSION: Increased sample sizes and sample sets from Africa covering as much African genetic diversity as possible will be critical to identify additional disease-associated loci and improve deconvolution of local genetic ancestry effects.

6.
Restor Neurol Neurosci ; 35(5): 437-456, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28968249

RESUMEN

BACKGROUND: Many studies are currently researching the effects of video games, particularly in the domain of cognitive training. Great variability exists among video games however, and few studies have attempted to compare different types of video games. Little is known, for instance, about the cognitive processes or brain structures that underlie learning of different genres of video games. OBJECTIVE: To examine the cognitive and neural underpinnings of two different types of game learning in order to evaluate their common and separate correlates, with the hopes of informing future intervention research. METHODS: Participants (31 younger adults and 31 older adults) completed an extensive cognitive battery and played two different genres of video games, one action game and one strategy game, for 1.5 hours each. DTI scans were acquired for each participant, and regional fractional anisotropy (FA) values were extracted using the JHU atlas. RESULTS: Behavioral results indicated that better performance on tasks of working memory and perceptual discrimination was related to enhanced learning in both games, even after controlling for age, whereas better performance on a perceptual speed task was uniquely related with enhanced learning of the strategy game. DTI results indicated that white matter FA in the right fornix/stria terminalis was correlated with action game learning, whereas white matter FA in the left cingulum/hippocampus was correlated with strategy game learning, even after controlling for age. CONCLUSION: Although cognition, to a large extent, was a common predictor of both types of game learning, regional white matter FA could separately predict action and strategy game learning. Given the neural and cognitive correlates of strategy game learning, strategy games may provide a more beneficial training tool for adults suffering from memory-related disorders or declines in processing speed, particularly older adults.


Asunto(s)
Encéfalo/diagnóstico por imagen , Cognición , Aprendizaje , Juegos de Video/psicología , Sustancia Blanca/diagnóstico por imagen , Adulto , Factores de Edad , Anciano , Atención/fisiología , Encéfalo/anatomía & histología , Cognición/fisiología , Imagen de Difusión Tensora , Discriminación en Psicología/fisiología , Función Ejecutiva/fisiología , Análisis Factorial , Femenino , Humanos , Aprendizaje/fisiología , Masculino , Memoria a Corto Plazo/fisiología , Análisis Multivariante , Pruebas Neuropsicológicas , Sustancia Blanca/anatomía & histología
7.
Psychophysiology ; 53(11): 1639-1650, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27500992

RESUMEN

Overloading the capacity of visual attention can result in mistakenly combining the various features of an object, that is, illusory conjunctions. We hypothesize that if the two hemispheres separately process visual information by splitting attention, connectivity of corpus callosum-a brain structure integrating the two hemispheres-would predict the degree of illusory conjunctions. In the current study, we assessed two types of illusory conjunctions using a memory-scanning paradigm; the features were either presented across the two opposite hemifields or within the same hemifield. Four objects, each with two visual features, were briefly presented together followed by a probe-recognition and a confidence rating for the recognition accuracy. MRI scans were also obtained. Results indicated that successful recollection during probe recognition was better for across hemifields conjunctions compared to within hemifield conjunctions, lending support to the bilateral advantage of the two hemispheres in visual short-term memory. Age-related differences regarding the underlying mechanisms of the bilateral advantage indicated greater reliance on recollection-based processing in young and on familiarity-based processing in old. Moreover, the integrity of the posterior corpus callosum was more predictive of opposite hemifield illusory conjunctions compared to within hemifield illusory conjunctions, even after controlling for age. That is, individuals with lesser posterior corpus callosum connectivity had better recognition for objects when their features were recombined from the opposite hemifields than from the same hemifield. This study is the first to investigate the role of the corpus callosum in splitting attention between versus within hemifields.


Asunto(s)
Atención/fisiología , Cuerpo Calloso/fisiología , Individualidad , Memoria a Corto Plazo/fisiología , Ilusiones Ópticas/fisiología , Campos Visuales/fisiología , Adolescente , Adulto , Anciano , Cuerpo Calloso/anatomía & histología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Estimulación Luminosa , Reconocimiento en Psicología/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA