Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38059605

RESUMEN

Two novel Micromonospora strains, STR1-7T and STR1S-6T, were isolated from the rhizosphere of a Parastrephia quadrangularis plant growing in the Salar de Tara region of the Atacama Desert, Chile. Chemotaxonomic, cultural and phenotypic features confirmed that the isolates belonged to the genus Micromonospora. They grew from 20 to 37 °C, from pH7 to 8 and in the presence of up to 3 %, w/v NaCl. The isolates formed distinct branches in Micromonospora gene trees based on 16S rRNA gene sequences and on a multi-locus sequence analysis of conserved house-keeping genes. A phylogenomic tree generated from the draft genomes of the isolates and their closest phylogenetic neighbours showed that isolate STR1-7T is most closely related to Micromonospora orduensis S2509T, and isolate STR1S-6 T forms a distinct branch that is most closely related to 12 validly named Micromonospora species, including Micromonospora saelicesensis the earliest proposed member of the group. The isolates were separated from one another and from their closest phylogenomic neighbours using a combination of chemotaxonomic, genomic and phenotypic features, and by low average nucleotide index and digital DNA-DNA hybridization values. Consequently, it is proposed that isolates STR1-7T and STR1S-6T be recognized as representing new species in the genus Micromonospora, namely as Micromonospora parastrephiae sp. nov. and Micromonospora tarensis sp. nov.; the type strains are STR1-7T (=CECT 9665T=LMG 30768T) and STR1S-6T (=CECT 9666T=LMG 30770T), respectively. Genome mining showed that the isolates have the capacity to produce novel specialized metabolites, notably antibiotics and compounds that promote plant growth, as well as a broad-range of stress-related genes that provide an insight into how they cope with harsh abiotic conditions that prevail in high-altitude Atacama Desert soils.


Asunto(s)
Fabaceae , Micromonospora , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Análisis de Secuencia de ADN , Chile , Filogenia , Rizosfera , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base
2.
Molecules ; 27(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36364011

RESUMEN

Bacteria belonging to the phylum Actinobacteria are a very good source of antibiotics, and indeed dominate the current clinical antibiotic space. This paper reports Mutactimycin AP, a new compound belonging to an anthracycline-type family of antibiotics, isolated from a Saccharothrix sp. This actinobacterial strain was isolated from the rhizosphere of lupine plants growing in the extreme hyper-arid Atacama Desert. Structural characterization was carried out using electrospray ionization-mass spectrometry (ESI-MS) and NMR spectroscopy in combination with molecular modelling. The compound was tested against the ESKAPE pathogens, where it showed activity against MRSA and five strains associated with bovine mastitis, where it showed activity against Enterococcus pseudoavium and Staphylycoccus Aureus subsp. Aureus.


Asunto(s)
Actinobacteria , Actinomycetales , Bovinos , Animales , Femenino , Actinobacteria/química , Microbiología del Suelo , Bacterias , Antibacterianos/farmacología , Clima Desértico
3.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31562169

RESUMEN

Analysis of the genome sequence of Streptomyces leeuwenhoekii C34T identified biosynthetic gene clusters (BGCs) for three different lasso peptides (Lp1, Lp2, and Lp3) which were not known to be made by the strain. Lasso peptides represent relatively new members of the RiPP (ribosomally synthesized and posttranslationally modified peptides) family of natural products and have not been extensively studied. Lp3, whose production could be detected in culture supernatants from S. leeuwenhoekii C34T and after heterologous expression of its BGC in Streptomyces coelicolor, is identical to the previously characterized chaxapeptin. Lp1, whose production could not be detected or achieved heterologously, appears to be identical to a recently identified member of the citrulassin family of lasso peptides. Since production of Lp2 by S. leeuwenhoekii C34T was not observed, its BGC was also expressed in S. coelicolor The lasso peptide was isolated and its structure confirmed by mass spectrometry and nuclear magnetic resonance analyses, revealing a novel structure that appears to represent a new family of lasso peptides.IMPORTANCE Recent developments in genome sequencing combined with bioinformatic analysis have revealed that actinomycetes contain a plethora of unexpected BGCs and thus have the potential to produce many more natural products than previously thought. This reflects the inability to detect the production of these compounds under laboratory conditions, perhaps through the use of inappropriate growth media or the absence of the environmental cues required to elicit expression of the corresponding BGCs. One approach to overcoming this problem is to circumvent the regulatory mechanisms that control expression of the BGC in its natural host by deploying heterologous expression. The generally compact nature of lasso peptide BGCs makes them particularly amenable to this approach, and, in the example given here, analysis revealed a new member of the lasso peptide family of RiPPs. This approach should be readily applicable to other cryptic lasso peptide gene clusters and would also facilitate the design and production of nonnatural variants by changing the sequence encoding the core peptide, as has been achieved with other classes of RiPPs.


Asunto(s)
Proteínas Bacterianas/genética , Expresión Génica , Familia de Multigenes , Péptidos/genética , Streptomyces/genética , Proteínas Bacterianas/metabolismo , Péptidos/metabolismo , Streptomyces/metabolismo
4.
Biotechnol Bioeng ; 115(7): 1815-1828, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29578590

RESUMEN

The first genome scale model (GSM) for Streptomyces leeuwenhoekii C34 was developed to study the biosynthesis pathways of specialized metabolites and to find metabolic engineering targets for enhancing their production. The model, iVR1007, consists of 1,722 reactions, 1,463 metabolites, and 1,007 genes, it includes the biosynthesis pathways of chaxamycins, chaxalactins, desferrioxamines, ectoine, and other specialized metabolites. iVR1007 was validated using experimental information of growth on 166 different sources of carbon, nitrogen and phosphorous, showing an 83.7% accuracy. The model was used to predict metabolic engineering targets for enhancing the biosynthesis of chaxamycins and chaxalactins. Gene knockouts, such as sle03600 (L-homoserine O-acetyltransferase), and sle39090 (trehalose-phosphate synthase), that enhance the production of the specialized metabolites by increasing the pool of precursors were identified. Using the algorithm of flux scanning based on enforced objective flux (FSEOF) implemented in python, 35 and 25 over-expression targets for increasing the production of chaxamycin A and chaxalactin A, respectively, that were not directly associated with their biosynthesis routes were identified. Nineteen over-expression targets that were common to the two specialized metabolites studied, like the over-expression of the acetyl carboxylase complex (sle47660 (accA) and any of the following genes: sle44630 (accA_1) or sle39830 (accA_2) or sle27560 (bccA) or sle59710) were identified. The predicted knockouts and over-expression targets will be used to perform metabolic engineering of S. leeuwenhoekii C34 and obtain overproducer strains.


Asunto(s)
Genoma Bacteriano , Redes y Vías Metabólicas/genética , Modelos Biológicos , Streptomyces/genética , Biología de Sistemas/métodos , Antibacterianos/biosíntesis , Ingeniería Metabólica/métodos , Metabolismo Secundario
5.
Antonie Van Leeuwenhoek ; 111(8): 1479-1491, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29396707

RESUMEN

Metabolic modelling is a useful tool that enables the rational design of metabolic engineering experiments and the study of the unique capabilities of biotechnologically important microorganisms. The extreme abiotic conditions of the Atacama Desert have selected microbial diversity with exceptional characteristics that can be applied in the mining industry for bioleaching processes and for production of specialised metabolites with antimicrobial, antifungal, antiviral, antitumoral, among other activities. In this review we summarise the scientific data available of the use of metabolic modelling and flux analysis to improve the performance of Atacama Desert microorganisms in biotechnological applications.


Asunto(s)
Bacterias/metabolismo , Biotecnología , Análisis de Flujos Metabólicos , Redes y Vías Metabólicas , Modelos Biológicos , Microbiología del Suelo , Bacterias/clasificación , Chile , Clima Desértico , Genoma Bacteriano/genética , Metabolómica
6.
Antonie Van Leeuwenhoek ; 111(8): 1433-1448, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29397490

RESUMEN

Streptomyces leeuwenhoekii strains C34T, C38, C58 and C79 were isolated from a soil sample collected from the Chaxa Lagoon, located in the Salar de Atacama in northern Chile. These streptomycetes produce a variety of new specialised metabolites with antibiotic, anti-cancer and anti-inflammatory activities. Moreover, genome mining performed on two of these strains has revealed the presence of biosynthetic gene clusters with the potential to produce new specialised metabolites. This review focusses on this new clade of Streptomyces strains, summarises the literature and presents new information on strain C34T.


Asunto(s)
Streptomyces/clasificación , Streptomyces/fisiología , Antibacterianos/biosíntesis , Antibacterianos/química , Chile , Genoma Bacteriano/genética , Estructura Molecular , Familia de Multigenes/genética , Filogenia , Microbiología del Suelo , Streptomyces/genética , Streptomyces/metabolismo
7.
Antonie Van Leeuwenhoek ; 111(8): 1375-1387, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29480426

RESUMEN

Innovative procedures were used to selectively isolate small numbers of Micromonospora strains from extreme hyper-arid and high altitude Atacama Desert soils. Micromonosporae were recognised on isolation plates by their ability to produce filamentous microcolonies that were strongly attached to the agar. Most of the isolates formed characteristic orange colonies that lacked aerial hyphae and turned black on spore formation, whereas those from the high altitude soil were dry, blue-green and covered by white aerial hyphae. The isolates were assigned to seven multi- and eleven single-membered groups based on BOX-PCR profiles. Representatives of the groups were assigned to either multi-membered clades that also contained marker strains or formed distinct phyletic lines in the Micromonospora 16S rRNA gene tree; many of the isolates were considered to be putatively novel species of Micromonospora. Most of the isolates from the high altitude soils showed activity against wild type strains of Bacillus subtilis and Pseudomonas fluorescens while those from the rhizosphere of Parastrephia quadrangulares and from the Lomas Bayas hyper-arid soil showed resistance to UV radiation.


Asunto(s)
Clima Desértico , Micromonospora/clasificación , Micromonospora/aislamiento & purificación , Filogenia , Microbiología del Suelo , Chile , ADN Bacteriano/genética , Variación Genética , Genoma Bacteriano , Micromonospora/genética , Micromonospora/crecimiento & desarrollo , ARN Ribosómico 16S/genética
8.
BMC Genomics ; 16: 485, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26122045

RESUMEN

BACKGROUND: Next Generation DNA Sequencing (NGS) and genome mining of actinomycetes and other microorganisms is currently one of the most promising strategies for the discovery of novel bioactive natural products, potentially revealing novel chemistry and enzymology involved in their biosynthesis. This approach also allows rapid insights into the biosynthetic potential of microorganisms isolated from unexploited habitats and ecosystems, which in many cases may prove difficult to culture and manipulate in the laboratory. Streptomyces leeuwenhoekii (formerly Streptomyces sp. strain C34) was isolated from the hyper-arid high-altitude Atacama Desert in Chile and shown to produce novel polyketide antibiotics. RESULTS: Here we present the de novo sequencing of the S. leeuwenhoekii linear chromosome (8 Mb) and two extrachromosomal replicons, the circular pSLE1 (86 kb) and the linear pSLE2 (132 kb), all in single contigs, obtained by combining Pacific Biosciences SMRT (PacBio) and Illumina MiSeq technologies. We identified the biosynthetic gene clusters for chaxamycin, chaxalactin, hygromycin A and desferrioxamine E, metabolites all previously shown to be produced by this strain (J Nat Prod, 2011, 74:1965) and an additional 31 putative gene clusters for specialised metabolites. As well as gene clusters for polyketides and non-ribosomal peptides, we also identified three gene clusters encoding novel lasso-peptides. CONCLUSIONS: The S. leeuwenhoekii genome contains 35 gene clusters apparently encoding the biosynthesis of specialised metabolites, most of them completely novel and uncharacterised. This project has served to evaluate the current state of NGS for efficient and effective genome mining of high GC actinomycetes. The PacBio technology now permits the assembly of actinomycete replicons into single contigs with >99 % accuracy. The assembled Illumina sequence permitted not only the correction of omissions found in GC homopolymers in the PacBio assembly (exacerbated by the high GC content of actinomycete DNA) but it also allowed us to obtain the sequences of the termini of the chromosome and of a linear plasmid that were not assembled by PacBio. We propose an experimental pipeline that uses the Illumina assembled contigs, in addition to just the reads, to complement the current limitations of the PacBio sequencing technology and assembly software.


Asunto(s)
Genoma Bacteriano , Plásmidos/metabolismo , Streptomyces/genética , Mapeo Contig , Secuenciación de Nucleótidos de Alto Rendimiento , Secuencias Invertidas Repetidas , Macrólidos/metabolismo , Familia de Multigenes , Plásmidos/genética , Análisis de Secuencia de ADN
9.
Appl Environ Microbiol ; 81(17): 5820-31, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26092459

RESUMEN

Streptomyces leeuwenhoekii, isolated from the hyperarid Atacama Desert, produces the new ansamycin-like compounds chaxamycins A to D, which possess potent antibacterial activity and moderate antiproliferative activity. We report the development of genetic tools to manipulate S. leeuwenhoekii and the identification and partial characterization of the 80.2-kb chaxamycin biosynthesis gene cluster, which was achieved by both mutational analysis in the natural producer and heterologous expression in Streptomyces coelicolor A3(2) strain M1152. Restoration of chaxamycin production in a nonproducing ΔcxmK mutant (cxmK encodes 3-amino-5-hydroxybenzoic acid [AHBA] synthase) was achieved by supplementing the growth medium with AHBA, suggesting that mutasynthesis may be a viable approach for the generation of novel chaxamycin derivatives.


Asunto(s)
Antibacterianos/biosíntesis , Proteínas Bacterianas/genética , Familia de Multigenes , Rifamicinas/biosíntesis , Streptomyces coelicolor/metabolismo , Streptomyces/genética , Antibacterianos/química , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Rifamicinas/química , Streptomyces coelicolor/genética
10.
Sci Rep ; 9(1): 4678, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886188

RESUMEN

The taxonomic status, biotechnological and ecological potential of several Micromonospora strains isolated from an extreme hyper arid Atacama Desert soil were determined. Initially, a polyphasic study was undertaken to clarify the taxonomic status of five micromonosporae, strains LB4, LB19, LB32T, LB39T and LB41, isolated from an extreme hyper-arid soil collected from one of the driest regions of the Atacama Desert. All of the isolates were found to have chemotaxonomic, cultural and morphological properties consistent with their classification in the genus Micromonospora. Isolates LB32T and LB39T were distinguished from their nearest phylogenetic neighbours and proposed as new species, namely as Micromonospora arida sp. nov. and Micromonospora inaquosa sp. nov., respectively. Eluted methanol extracts of all of the isolates showed activity against a panel of bacterial and fungal indicator strains, notably against multi-drug resistant Klebsiella pneumoniae ATCC 700603 while isolates LB4 and LB41 showed pronounced anti-tumour activity against HepG2 cells. Draft genomes generated for the isolates revealed a rich source of novel biosynthetic gene clusters, some of which were unique to individual strains thereby opening up the prospect of selecting especially gifted micromonosporae for natural product discovery. Key stress-related genes detected in the genomes of all of the isolates provided an insight into how micromonosporae adapt to the harsh environmental conditions that prevail in extreme hyper-arid Atacama Desert soils.


Asunto(s)
Antiinfecciosos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Infecciones por Klebsiella/terapia , Klebsiella pneumoniae/fisiología , Neoplasias Hepáticas/terapia , Metanol/aislamiento & purificación , Micromonospora/fisiología , Antiinfecciosos/uso terapéutico , Antineoplásicos/uso terapéutico , Extractos Celulares , Chile , Clima Desértico , Descubrimiento de Drogas , Células Hep G2 , Humanos , Filogenia , Microbiología del Suelo , Streptomyces/fisiología , Estrés Fisiológico/genética
11.
Metab Eng Commun ; 3: 84-96, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29468116

RESUMEN

Acidithiobacillus ferrooxidans is a gram-negative chemolithoautotrophic γ-proteobacterium. It typically grows at an external pH of 2 using the oxidation of ferrous ions by oxygen, producing ferric ions and water, while fixing carbon dioxide from the environment. A. ferrooxidans is of great interest for biomining and environmental applications, as it can process mineral ores and alleviate the negative environmental consequences derived from the mining processes. In this study, the first genome-scale metabolic reconstruction of A. ferrooxidans ATCC 23270 was generated (iMC507). A total of 587 metabolic and transport/exchange reactions, 507 genes and 573 metabolites organized in over 42 subsystems were incorporated into the model. Based on a new genetic algorithm approach, that integrates flux balance analysis, chemiosmotic theory, and physiological data, the proton translocation stoichiometry for a number of enzymes and maintenance parameters under aerobic chemolithoautotrophic conditions using three different electron donors were estimated. Furthermore, a detailed electron transfer and carbon flux distributions during chemolithoautotrophic growth using ferrous ion, tetrathionate and thiosulfate were determined and reported. Finally, 134 growth-coupled designs were calculated that enables Extracellular Polysaccharide production. iMC507 serves as a knowledgebase for summarizing and categorizing the information currently available for A. ferrooxidans and enables the understanding and engineering of Acidithiobacillus and similar species from a comprehensive model-driven perspective for biomining applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA