Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Biochem Cell Biol ; 55: 171-86, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25218857

RESUMEN

The aim of this study is to characterize the function of mitochondria and main energy fluxes in human colorectal cancer (HCC) cells. We have performed quantitative analysis of cellular respiration in post-operative tissue samples collected from 42 cancer patients. Permeabilized tumor tissue in combination with high resolution respirometry was used. Our results indicate that HCC is not a pure glycolytic tumor and the oxidative phosphorylation (OXPHOS) system may be the main provider of ATP in these tumor cells. The apparent Michaelis-Menten constant (Km) for ADP and maximal respiratory rate (Vm) values were calculated for the characterization of the affinity of mitochondria for exogenous ADP: normal colon tissue displayed low affinity (Km = 260 ± 55 µM) whereas the affinity of tumor mitochondria was significantly higher (Km = 126 ± 17 µM). But concurrently the Vm value of the tumor samples was 60-80% higher than that in control tissue. The reason for this change is related to the increased number of mitochondria. Our data suggest that in both HCC and normal intestinal cells tubulin ß-II isoform probably does not play a role in the regulation of permeability of the MOM for adenine nucleotides. The mitochondrial creatine kinase energy transfer system is not functional in HCC and our experiments showed that adenylate kinase reactions could play an important role in the maintenance of energy homeostasis in colorectal carcinomas instead of creatine kinase. Immunofluorescent studies showed that hexokinase 2 (HK-2) was associated with mitochondria in HCC cells, but during carcinogenesis the total activity of HK did not change. Furthermore, only minor alterations in the expression of HK-1 and HK-2 isoforms have been observed. Metabolic Control analysis showed that the distribution of the control over electron transport chain and ATP synthasome complexes seemed to be similar in both tumor and control tissues. High flux control coefficients point to the possibility that the mitochondrial respiratory chain is reorganized in some way or assembled into large supercomplexes in both tissues.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/metabolismo , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/genética , Creatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Hexoquinasa/metabolismo , Humanos , Inmunohistoquímica , Microscopía Confocal , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA