Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Blood ; 138(25): 2607-2620, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34293122

RESUMEN

In addition to their hemostatic role, platelets play a significant role in immunity. Once activated, platelets release extracellular vesicles (EVs) formed by the budding of their cytoplasmic membranes. Because of their heterogeneity, platelet EVs (PEVs) are thought to perform diverse functions. It is unknown, however, whether the proteasome is transferred from platelets to PEVs or whether its function is retained. We hypothesized that functional protein processing and antigen presentation machinery are transferred to PEVs by activated platelets. Using molecular and functional assays, we found that the active 20S proteasome was enriched in PEVs, along with major histocompatibility complex class I (MHC-I) and lymphocyte costimulatory molecules (CD40L and OX40L). Proteasome-containing PEVs were identified in healthy donor blood, but did not increase in platelet concentrates that caused adverse transfusion reactions. They were augmented, however, after immune complex injections in mice. The complete biodistribution of murine PEVs after injection into mice revealed that they principally reached lymphoid organs, such as spleen and lymph nodes, in addition to the bone marrow, and to a lesser extent, liver and lungs. The PEV proteasome processed exogenous ovalbumin (OVA) and loaded its antigenic peptide onto MHC-I molecules, which promoted OVA-specific CD8+ T-lymphocyte proliferation. These results suggest that PEVs contribute to adaptive immunity through cross-presentation of antigens and have privileged access to immune cells through the lymphatic system, a tissue location that is inaccessible to platelets.


Asunto(s)
Plaquetas/inmunología , Vesículas Extracelulares/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Animales , Presentación de Antígeno , Plaquetas/química , Vesículas Extracelulares/química , Antígenos de Histocompatibilidad Clase I/análisis , Humanos , Ratones , Ratones Endogámicos C57BL , Complejo de la Endopetidasa Proteasomal/análisis
2.
Transfus Med ; 32(2): 168-174, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33987889

RESUMEN

OBJECTIVE: To evaluate the effect of platelet:erythrocyte (P:E) ratios on Plasmodium falciparum erythrocyte invasion. BACKGROUND: Recent reports have shown that platelets are directly involved in the immune response towards P. falciparum during erythrocyte invasion. However, the literature both supports and conflicts with a role for platelets in limiting invasion. Also, the effect of platelet numbers on invasion (parasitemia) has not been thoroughly investigated. METHODS/MATERIALS: The P. falciparum strains FCR3S1.2 and W2mef were cultured with group O erythrocytes. The cultures were synchronised and supplemented with pooled platelets at P:E ratios ranging from 1:100 to 1:2. Parasitemia was measured at 40 h by flow cytometry and by microscopy of blood smears. RESULTS: A linear relationship was observed between reduced invasion and increased platelet numbers at P:E ratios ranging from 1:100 to 1:20. However, this effect was reversed at lower ratios (1:10-1:2). Microscopic evaluation revealed aggregation and attachment of platelets to erythrocytes, but not specifically to parasitised erythrocytes. CONCLUSION: We have shown that under physiological P:E ratios (approx. 1:10-1:40), platelets inhibited P. falciparum invasion in a dose-dependent manner. At ratios of 1:10 and below, platelets did not further increase the inhibitory effect and, although the trend was reversed, inhibition was still maintained.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Plaquetas , Eritrocitos , Humanos , Parasitemia
3.
Blood ; 133(17): 1840-1853, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-30808638

RESUMEN

Transfusion-associated circulatory overload (TACO) and transfusion-related acute lung injury (TRALI) are syndromes of acute respiratory distress that occur within 6 hours of blood transfusion. TACO and TRALI are the leading causes of transfusion-related fatalities, and specific therapies are unavailable. Diagnostically, it remains very challenging to distinguish TACO and TRALI from underlying causes of lung injury and/or fluid overload as well as from each other. TACO is characterized by pulmonary hydrostatic (cardiogenic) edema, whereas TRALI presents as pulmonary permeability edema (noncardiogenic). The pathophysiology of both syndromes is complex and incompletely understood. A 2-hit model is generally assumed to underlie TACO and TRALI disease pathology, where the first hit represents the clinical condition of the patient and the second hit is conveyed by the transfusion product. In TACO, cardiac or renal impairment and positive fluid balance appear first hits, whereas suboptimal fluid management or other components in the transfused product may enable the second hit. Remarkably, other factors beyond volume play a role in TACO. In TRALI, the first hit can, for example, be represented by inflammation, whereas the second hit is assumed to be caused by antileukocyte antibodies or biological response modifiers (eg, lipids). In this review, we provide an up-to-date overview of TACO and TRALI regarding clinical definitions, diagnostic strategies, pathophysiological mechanisms, and potential therapies. More research is required to better understand TACO and TRALI pathophysiology, and more biomarker studies are warranted. Collectively, this may result in improved diagnostics and development of therapeutic approaches for these life-threatening transfusion reactions.


Asunto(s)
Transfusión de Componentes Sanguíneos/efectos adversos , Reacción a la Transfusión/etiología , Lesión Pulmonar Aguda Postransfusional/etiología , Humanos , Pronóstico
4.
Blood ; 134(1): 74-84, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31076444

RESUMEN

Transfusion-related acute lung injury (TRALI) is one of the leading causes of transfusion-related fatalities and is characterized by the onset of acute respiratory distress within 6 hours upon blood transfusion. Specific therapies are unavailable. Preexisting inflammation is a risk factor for TRALI and neutrophils (polymorphonuclear neutrophils [PMNs]) are considered to be the major pathogenic cells. Osteopontin (OPN) is a multifunctional protein expressed at sites of inflammation and, for example, is involved in pulmonary disorders, can regulate cellular migration, and can function as a PMN chemoattractant. We investigated whether OPN is involved in TRALI induction by promoting PMN recruitment to the lungs. Using a previously established murine TRALI model, we found that in contrast to wild-type (WT) mice, OPN knockout (KO) mice were resistant to antibody-mediated PMN-dependent TRALI induction. Administration of purified OPN to the OPN KO mice, however, restored the TRALI response and pulmonary PMN accumulation. Alternatively, blockade of OPN in WT mice using an anti-OPN antibody prevented the onset of TRALI induction. Using pulmonary immunohistochemistry, OPN could be specifically detected in the lungs of mice that suffered from TRALI. The OPN-mediated TRALI response seemed dependent on macrophages, likely the cellular source of OPN and OPN polymerization, and independent from the OPN receptor CD44, interleukin 6 (IL-6), and other PMN chemoattractants including macrophage inflammatory protein-2 (MIP-2). These data indicate that OPN is critically required for induction of antibody-mediated murine TRALI through localization to the lungs and stimulation of pulmonary PMN recruitment. This suggests that anti-OPN antibody therapy may be a potential therapeutic strategy to explore in TRALI patients.


Asunto(s)
Neutrófilos/patología , Osteopontina/metabolismo , Lesión Pulmonar Aguda Postransfusional/metabolismo , Lesión Pulmonar Aguda Postransfusional/patología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
Platelets ; 32(8): 1092-1102, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33999778

RESUMEN

SARS-CoV-2 has spread rapidly worldwide, causing the COVID-19 pandemic. Platelet activation and platelet-leukocyte complex formation are proposed to contribute to disease progression. Here, we report platelet and leukocyte activation during acute and convalescent COVID-19 in patients recruited between May-July 2020. Blood samples were analyzed by flow cytometry and ELISA using paired comparison between inclusion (day 0) and 28 days later. The majority of patients were mildly or moderately ill with significantly higher cytokine levels (IL-6 and IL-10) on day 0 as compared with day 28. Platelet activation and granule release were significantly higher on day 0 compared with day 28, as determined by ADP- or thrombin-induced surface CD62P expression, baseline released CD62P, and thrombin-induced platelet-monocyte complex formation. Monocyte activation and procoagulant status at baseline and post activation were heterogeneous but generally lower on day 0 compared with day 28. Baseline and thrombin- or fMLF-induced neutrophil activation and procoagulant status were significantly lower on day 0 compared with day 28. We demonstrate that during the acute phase of COVID-19 compared with the convalescent phase, platelets are more responsive while neutrophils are less responsive. COVID-19 is associated with thromboembolic events where platelet activation and interaction with leukocytes may play an important role.


Asunto(s)
Plaquetas , COVID-19 , Convalecencia , Monocitos , Activación Neutrófila , Neutrófilos , Activación Plaquetaria , SARS-CoV-2/metabolismo , Enfermedad Aguda , Adulto , Anciano , Anciano de 80 o más Años , Plaquetas/metabolismo , Plaquetas/patología , COVID-19/sangre , COVID-19/patología , Femenino , Citometría de Flujo , Humanos , Interleucina-10/sangre , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Monocitos/patología , Neutrófilos/metabolismo , Neutrófilos/patología
6.
Curr Opin Hematol ; 27(6): 423-429, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32868673

RESUMEN

: Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder mediated by antiplatelet autoantibodies and antigen-specific T cells that either destroy platelets peripherally in the spleen or impair platelet production in the bone marrow. There have been a plethora of publications relating to the pathophysiology of ITP and since January of 2019, at least 50 papers have been published on ITP pathophysiology. PURPOSE OF REVIEW: To summarize the literature relating to the pathophysiology of ITP including the working mechanisms of therapies, T-cell and B-cell physiology, protein/RNA/DNA biochemistry, and animal models in an attempt to unify the perceived abnormal immune processes. RECENT FINDINGS: The most recent pathophysiologic irregularities associated with ITP relate to abnormal T-cell responses, particularly, defective T regulatory cell activity and how therapeutics can restore these responses. The robust literature on T cells in ITP points to the notion that ITP is a disease initiated by faulty self-tolerance mechanisms very much like that of other organ-specific autoimmune diseases. There is also a large literature on new and existing animal models of ITP and these will be discussed. It appears that understanding how to specifically modulate T cells in patients with ITP will undoubtedly lead to effective antigen-specific therapeutics. CONCLUSIONS: ITP is predominately a T cell disorder which leads to a breakdown in self tolerance mechanisms and allows for the generation of anti-platelet autoantibodies and T cells. Novel therapeutics that target T cells may be the most effective way to perhaps cure this disorder.


Asunto(s)
Púrpura Trombocitopénica Idiopática/fisiopatología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Modelos Animales de Enfermedad , Humanos , Inmunidad Celular , Púrpura Trombocitopénica Idiopática/inmunología , Púrpura Trombocitopénica Idiopática/patología , Púrpura Trombocitopénica Idiopática/terapia , Linfocitos T/inmunología , Linfocitos T/patología
7.
Platelets ; 31(3): 399-402, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31146647

RESUMEN

Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder in which autoantibodies and/or autoreactive T cells destroy platelets and megakaryocytes in the spleen and bone marrow, respectively. Thrombopoietin receptor agonists (TPO-RA e.g. Romiplostim and Eltrombopag) have made a substantial contribution to the treatment of patients with ITP, which are refractory to first-line treatments and approximately 30% demonstrate sustained elevated platelet counts after drug tapering. How TPO-RA induce these sustained responses is not known. We analyzed the efficacy of a murine TPO-RA in a well-established murine model of active ITP. Treatment with TPO-RA (10 ug/kg, based on pilot dose escalation experiments) significantly raised the platelet counts in ITP-mice. Immunomodulation was assessed by measuring serum IgG anti-platelet antibody levels; TPO-RA-treated mice had significantly reduced IgG anti-platelet antibodies despite the increasing platelet counts. These results suggest that TPO-RA is not only an efficacious therapy but also reduces anti-platelet humoral immunity in ITP.


Asunto(s)
Autoanticuerpos/inmunología , Plaquetas/inmunología , Plaquetas/metabolismo , Recuento de Plaquetas , Púrpura Trombocitopénica Idiopática/etiología , Púrpura Trombocitopénica Idiopática/metabolismo , Receptores de Trombopoyetina/agonistas , Animales , Autoinmunidad , Biopsia , Plaquetas/efectos de los fármacos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Inmunomodulación , Ratones , Ratones Noqueados , Púrpura Trombocitopénica Idiopática/sangre , Púrpura Trombocitopénica Idiopática/patología
8.
Kidney Int ; 94(4): 689-700, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29884545

RESUMEN

Certain kidney diseases are associated with complement activation although a renal triggering factor has not been identified. Here we demonstrated that renin, a kidney-specific enzyme, cleaves C3 into C3b and C3a, in a manner identical to the C3 convertase. Cleavage was specifically blocked by the renin inhibitor aliskiren. Renin-mediated C3 cleavage and its inhibition by aliskiren also occurred in serum. Generation of C3 cleavage products was demonstrated by immunoblotting, detecting the cleavage product C3b, by N-terminal sequencing of the cleavage product, and by ELISA for C3a release. Functional assays showed mast cell chemotaxis towards the cleavage product C3a and release of factor Ba when the cleavage product C3b was combined with factor B and factor D. The renin-mediated C3 cleavage product bound to factor B. In the presence of aliskiren this did not occur, and less C3 deposited on renin-producing cells. The effect of aliskiren was studied in three patients with dense deposit disease and this demonstrated decreased systemic and renal complement activation (increased C3, decreased C3a and C5a, decreased renal C3 and C5b-9 deposition and/or decreased glomerular basement membrane thickness) over a follow-up period of four to seven years. Thus, renin can trigger complement activation, an effect inhibited by aliskiren. Since renin concentrations are higher in renal tissue than systemically, this may explain the renal propensity of complement-mediated disease in the presence of complement mutations or auto-antibodies.


Asunto(s)
Amidas/farmacología , Activación de Complemento/efectos de los fármacos , Complemento C3/química , Fumaratos/farmacología , Glomerulonefritis Membranoproliferativa/metabolismo , Glomerulonefritis Membranoproliferativa/terapia , Renina/química , Amidas/uso terapéutico , Quimiotaxis/efectos de los fármacos , Niño , Complemento C3/metabolismo , Complemento C3a/química , Complemento C3a/metabolismo , Complemento C3b/química , Complemento C3b/metabolismo , Complemento C4/química , Complemento C5a/química , Complemento C5a/metabolismo , Complemento C5b/química , Complemento C5b/metabolismo , Factor B del Complemento/química , Factor D del Complemento/química , Femenino , Fumaratos/uso terapéutico , Membrana Basal Glomerular/patología , Glomerulonefritis Membranoproliferativa/patología , Humanos , Mastocitos/fisiología , Renina/antagonistas & inhibidores , Renina/metabolismo
9.
Crit Care Med ; 46(5): e452-e458, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29384784

RESUMEN

OBJECTIVES: Transfusion-related acute lung injury is characterized by the onset of respiratory distress and acute lung injury following blood transfusion, but its pathogenesis remains poorly understood. Generally, a two-hit model is presumed to underlie transfusion-related acute lung injury with the first hit being risk factors present in the transfused patient (such as inflammation), whereas the second hit is conveyed by factors in the transfused donor blood (such as antileukocyte antibodies). At least 80% of transfusion-related acute lung injury cases are related to the presence of donor antibodies such as antihuman leukocyte or antihuman neutrophil antibodies. The remaining cases may be related to nonantibody-mediated factors such as biolipids or components related to storage and ageing of the transfused blood cells. At present, transfusion-related acute lung injury is the leading cause of transfusion-related fatalities and no specific therapy is clinically available. In this article, we critically appraise and discuss recent preclinical (bench) insights related to transfusion-related acute lung injury pathogenesis and their therapeutic potential for future use at the patients' bedside in order to combat this devastating and possibly fatal complication of transfusion. DATA SOURCES: We searched the PubMed database (until August 22, 2017). STUDY SELECTION: Using terms: "Transfusion-related acute lung injury," "TRALI," "TRALI and therapy," "TRALI pathogenesis." DATA EXTRACTION: English-written articles focusing on transfusion-related acute lung injury pathogenesis, with potential therapeutic implications, were extracted. DATA SYNTHESIS: We have identified potential therapeutic approaches based on the literature. CONCLUSIONS: We propose that the most promising therapeutic strategies to explore are interleukin-10 therapy, down-modulating C-reactive protein levels, targeting reactive oxygen species, or blocking the interleukin-8 receptors; all focused on the transfused recipient. In the long-run, it may perhaps also be advantageous to explore other strategies aimed at the transfused recipient or aimed toward the blood product, but these will require more validation and confirmation first.


Asunto(s)
Lesión Pulmonar Aguda Postransfusional/etiología , Humanos , Lesión Pulmonar Aguda Postransfusional/prevención & control , Lesión Pulmonar Aguda Postransfusional/terapia
10.
J Immunol ; 197(4): 1276-86, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27421478

RESUMEN

Complement activation occurs during enterohemorrhagic Escherichia coli (EHEC) infection and may exacerbate renal manifestations. In this study, we show glomerular C5b-9 deposits in the renal biopsy of a child with EHEC-associated hemolytic uremic syndrome. The role of the terminal complement complex, and its blockade as a therapeutic modality, was investigated in a mouse model of E. coli O157:H7 infection. BALB/c mice were treated with monoclonal anti-C5 i.p. on day 3 or 6 after intragastric inoculation and monitored for clinical signs of disease and weight loss for 14 d. All infected untreated mice (15 of 15) or those treated with an irrelevant Ab (8 of 8) developed severe illness. In contrast, only few infected mice treated with anti-C5 on day 3 developed symptoms (three of eight, p < 0.01 compared with mice treated with the irrelevant Ab on day 3) whereas most mice treated with anti-C5 on day 6 developed symptoms (six of eight). C6-deficient C57BL/6 mice were also inoculated with E. coli O157:H7 and only 1 of 14 developed disease, whereas 10 of 16 wild-type mice developed weight loss and severe disease (p < 0.01). Complement activation via the terminal pathway is thus involved in the development of disease in murine EHEC infection. Early blockade of the terminal complement pathway, before the development of symptoms, was largely protective, whereas late blockade was not. Likewise, lack of C6, and thereby deficient terminal complement complex, was protective in murine E. coli O157:H7 infection.


Asunto(s)
Complemento C6/antagonistas & inhibidores , Complejo de Ataque a Membrana del Sistema Complemento/antagonistas & inhibidores , Infecciones por Escherichia coli/inmunología , Síndrome Hemolítico-Urémico/inmunología , Animales , Preescolar , Complemento C6/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Modelos Animales de Enfermedad , Escherichia coli Enterohemorrágica , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
11.
Transfus Med Hemother ; 45(5): 290-298, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30498407

RESUMEN

The acute respiratory distress syndrome (ARDS) is a serious and common complication of multiple medical and surgical interventions, with sepsis, pneumonia, and aspiration of gastric contents being common risk factors. ARDS develops within 1 week of a known clinical insult or presents with new/worsening respiratory symptoms if the clinical insult is unknown. Approximately 40% of the ARDS cases have a fatal outcome. Transfusion-related acute lung injury (TRALI), on the other hand, is characterized by the occurrence of respiratory distress and acute lung injury, which presents within 6 h after administration of a blood transfusion. In contrast to ARDS, acute lung injury in TRALI is not attributable to another risk factor for acute lung injury. 'Possible TRALI', however, may have a clear temporal relationship to an alternative risk factor for acute lung injury. Risk factors for TRALI include chronic alcohol abuse and systemic inflammation. TRALI is the leading cause of transfusion-related fatalities. There are no specific therapies available for ARDS or TRALI as both have a complex and incompletely understood pathogenesis. Neutrophils (polymorphonuclear leukocytes; PMNs) have been suggested to be key effector cells in the pathogenesis of both syndromes. In the present paper, we summarize the literature with regard to PMN involvement in the pathogenesis of both ARDS and TRALI based on both human data as well as on animal models. The evidence generally supports a strong role for PMNs in both ARDS and TRALI. More research is required to shed light on the pathogenesis of these respiratory syndromes and to more thoroughly establish the nature of the PMN involvement, especially considering the heterogeneous etiologies of ARDS.

12.
PLoS Pathog ; 11(2): e1004619, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25719452

RESUMEN

Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.


Asunto(s)
Toxinas Bacterianas/metabolismo , Células Sanguíneas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Escherichia coli Enterohemorrágica/metabolismo , Infecciones por Escherichia coli/metabolismo , Adolescente , Adulto , Animales , Células Sanguíneas/microbiología , Micropartículas Derivadas de Células/microbiología , Células Cultivadas , Niño , Preescolar , Infecciones por Escherichia coli/patología , Femenino , Interacciones Huésped-Patógeno , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos BALB C , Transporte de Proteínas
14.
J Immunol ; 193(1): 317-26, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24850720

RESUMEN

IgA nephropathy (IgAN) is characterized by mesangial cell proliferation and extracellular matrix expansion associated with immune deposits consisting of galactose-deficient polymeric IgA1 and C3. We have previously shown that IgA-binding regions of streptococcal M proteins colocalize with IgA in mesangial immune deposits in patients with IgAN. In the present study, the IgA-binding M4 protein from group A Streptococcus was found to bind to galactose-deficient polymeric IgA1 with higher affinity than to other forms of IgA1, as shown by surface plasmon resonance and solid-phase immunoassay. The M4 protein was demonstrated to bind to mesangial cells not via the IgA-binding region but rather via the C-terminal region, as demonstrated by flow cytometry. IgA1 enhanced binding of M4 to mesangial cells, but not vice versa. Costimulation of human mesangial cells with M4 and galactose-deficient polymeric IgA1 resulted in a significant increase in IL-6 secretion compared with each stimulant alone. Galactose-deficient polymeric IgA1 alone, but not M4, induced C3 secretion from the cells, and costimulation enhanced this effect. Additionally, costimulation enhanced mesangial cell proliferation compared with each stimulant alone. These results indicate that IgA-binding M4 protein binds preferentially to galactose-deficient polymeric IgA1 and that these proteins together induce excessive proinflammatory responses and proliferation of human mesangial cells. Thus, tissue deposition of streptococcal IgA-binding M proteins may contribute to the pathogenesis of IgAN.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Portadoras/inmunología , Complemento C3/inmunología , Glomerulonefritis por IGA/inmunología , Inmunoglobulina A/inmunología , Interleucina-6/inmunología , Células Mesangiales/inmunología , Streptococcus/inmunología , Adolescente , Femenino , Glomerulonefritis por IGA/patología , Humanos , Masculino , Células Mesangiales/patología , Persona de Mediana Edad
15.
J Immunol ; 191(5): 2184-93, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23878316

RESUMEN

This study addressed the contribution of ADAMTS13 deficiency to complement activation in thrombotic thrombocytopenic purpura (TTP). Renal tissue and blood samples were available from 12 TTP patients. C3 and C5b-9 deposition were demonstrated in the renal cortex of two TTP patients, by immunofluorescence and immunohistochemistry, respectively. C3 was also demonstrated in the glomeruli of Shiga toxin-2-treated Adamts13(-/-) mice (n = 6 of 7), but less in mice that were not Shiga toxin-2 treated (n = 1 of 8, p < 0.05) or wild-type mice (n = 0 of 7). TTP patient plasma (n = 9) contained significantly higher levels of complement-coated endothelial microparticles than control plasma (n = 13), as detected by flow cytometry. Exposure of histamine-stimulated primary glomerular endothelial cells to platelet-rich plasma from patients, or patient platelet-poor plasma combined with normal platelets, in a perfusion system, under shear, induced C3 deposition on von Willebrand factor-platelet strings (on both von Willebrand factor and platelets) and on endothelial cells. Complement activation occurred via the alternative pathway. No C3 was detected when cells were exposed to TTP plasma that was preincubated with EDTA or heat-inactivated, or to control plasma. In the perfusion system, patient plasma induced more release of C3- and C9-coated endothelial microparticles compared with control plasma. The results indicate that the microvascular process induced by ADAMTS13 deficiency triggers complement activation on platelets and the endothelium, which may contribute to formation of thrombotic microangiopathy.


Asunto(s)
Proteínas ADAM/deficiencia , Activación de Complemento/inmunología , Microangiopatías Trombóticas/inmunología , Microangiopatías Trombóticas/metabolismo , Proteínas ADAM/inmunología , Proteína ADAMTS13 , Animales , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/inmunología , Ratones , Ratones Noqueados
16.
Pediatr Nephrol ; 29(11): 2225-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24924752

RESUMEN

BACKGROUND: Immunoglobulin A (IgA) nephropathy is a chronic glomerulonephritis with excessive glomerular deposition of IgA1, C3 and C5b-9, which may lead to renal failure. CASE DIAGNOSIS/TREATMENT: We describe the clinical course of an adolescent with rapidly progressive disease leading to renal failure in spite of immunosuppressive treatment. Due to refractory disease the patient was treated with eculizumab (anti-C5) for 3 months in an attempt to rescue renal function. Treatment led to clinical improvement with stabilization of the glomerular filtration rate and reduced proteinuria. Discontinuation of treatment led to a rapid deterioration of renal function. This was followed by a single dose of eculizumab, which again reduced creatinine levels temporarily. CONCLUSIONS: Early initiation of eculizumab therapy in patients with progressive IgA nephropathy may have a beneficial effect by blocking complement-mediated renal inflammation.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Inactivadores del Complemento/uso terapéutico , Glomerulonefritis por IGA/tratamiento farmacológico , Glomerulonefritis por IGA/patología , Riñón/patología , Terapia Recuperativa/métodos , Adolescente , Biopsia , Creatinina/sangre , Tasa de Filtración Glomerular , Humanos , Glomérulos Renales/patología , Masculino , Insuficiencia Renal/etiología
17.
J Am Soc Nephrol ; 24(9): 1413-23, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23744887

RESUMEN

Hemolytic uremic syndrome, a life-threatening disease often accompanied by acute renal failure, usually occurs after gastrointestinal infection with Shiga toxin 2 (Stx2)-producing Escherichia coli. Stx2 binds to the glycosphingolipid globotriaosylceramide receptor, expressed by renal epithelial cells, and triggers apoptosis by activating the apoptotic factor Bax. Signaling via the ouabain/Na,K-ATPase/IP3R/NF-κB pathway increases expression of Bcl-xL, an inhibitor of Bax, suggesting that ouabain might protect renal cells from Stx2-triggered apoptosis. Here, exposing rat proximal tubular cells to Stx2 in vitro resulted in massive apoptosis, upregulation of the apoptotic factor Bax, increased cleaved caspase-3, and downregulation of the survival factor Bcl-xL; co-incubation with ouabain prevented all of these effects. Ouabain activated the NF-κB antiapoptotic subunit p65, and the inhibition of p65 DNA binding abolished the antiapoptotic effect of ouabain in Stx2-exposed tubular cells. Furthermore, in vivo, administration of ouabain reversed the imbalance between Bax and Bcl-xL in Stx2-treated mice. Taken together, these results suggest that ouabain can protect the kidney from the apoptotic effects of Stx2.


Asunto(s)
Apoptosis/efectos de los fármacos , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/fisiopatología , Ouabaína/farmacología , Toxina Shiga II/farmacología , Proteína X Asociada a bcl-2/fisiología , Proteína bcl-X/fisiología , Animales , Apoptosis/fisiología , Caspasa 3/fisiología , Caspasa 8/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Túbulos Renales Proximales/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Proteína X Asociada a bcl-2/efectos de los fármacos , Proteína bcl-X/efectos de los fármacos
18.
Transfus Med Rev ; 34(4): 209-220, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33051111

RESUMEN

Platelets are the primary cellular mediators of hemostasis and this function firmly acquaints them with a variety of inflammatory processes. For example, platelets can act as circulating sentinels by expressing Toll-like receptors (TLR) that bind pathogens and this allows platelets to effectively kill them or present them to cells of the immune system. Furthermore, activated platelets secrete and express many pro- and anti-inflammatory molecules that attract and capture circulating leukocytes and direct them to inflamed tissues. In addition, platelets can directly influence adaptive immune responses via secretion of, for example, CD40 and CD40L molecules. Platelets are also the source of most of the microvesicles in the circulation and these miniscule elements further enhance the platelet's ability to communicate with the immune system. More recently, it has been demonstrated that platelets and their parent cells, the megakaryocytes (MK), can also uptake, process and present both foreign and self-antigens to CD8+ T-cells conferring on them the ability to directly alter adaptive immune responses. This review will highlight several of the non-hemostatic attributes of platelets that clearly and rightfully place them as integral players in immune reactions.


Asunto(s)
Inmunidad Adaptativa , Plaquetas/inmunología , Inmunidad Innata , Biomarcadores/sangre , Plaquetas/metabolismo , Humanos , Inmunomodulación , Inflamación/sangre , Inflamación/inmunología , Megacariocitos/inmunología , Megacariocitos/metabolismo , Transfusión de Plaquetas
19.
Sci Rep ; 9(1): 14362, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31591425

RESUMEN

Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli (EHEC), that cause gastrointestinal infection leading to hemolytic uremic syndrome. The aim of this study was to investigate if Stx signals via ATP and if blockade of purinergic receptors could be protective. Stx induced ATP release from HeLa cells and in a mouse model. Toxin induced rapid calcium influx into HeLa cells, as well as platelets, and a P2X1 receptor antagonist, NF449, abolished this effect. Likewise, the P2X antagonist suramin blocked calcium influx in Hela cells. NF449 did not affect toxin intracellular retrograde transport, however, cells pre-treated with NF449 exhibited significantly higher viability after exposure to Stx for 24 hours, compared to untreated cells. NF449 protected HeLa cells from protein synthesis inhibition and from Stx-induced apoptosis, assayed by caspase 3/7 activity. The latter effect was confirmed by P2X1 receptor silencing. Stx induced the release of toxin-positive HeLa cell- and platelet-derived microvesicles, detected by flow cytometry, an effect significantly reduced by NF449 or suramin. Suramin decreased microvesicle levels in mice injected with Stx or inoculated with Stx-producing EHEC. Taken together, we describe a novel mechanism of Stx-mediated cellular injury associated with ATP signaling and inhibited by P2X receptor blockade.


Asunto(s)
Infecciones por Escherichia coli/tratamiento farmacológico , Síndrome Hemolítico-Urémico/tratamiento farmacológico , Receptores Purinérgicos P2X1/genética , Toxina Shiga/genética , Adenosina Trifosfato/metabolismo , Animales , Bencenosulfonatos/farmacología , Plaquetas/microbiología , Escherichia coli Enterohemorrágica/efectos de los fármacos , Escherichia coli Enterohemorrágica/patogenicidad , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Células HeLa , Síndrome Hemolítico-Urémico/genética , Síndrome Hemolítico-Urémico/microbiología , Síndrome Hemolítico-Urémico/patología , Humanos , Ratones , Antagonistas del Receptor Purinérgico P2X/farmacología , Toxina Shiga/antagonistas & inhibidores
20.
Blood Adv ; 2(13): 1651-1663, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29991496

RESUMEN

Transfusion-related acute lung injury (TRALI) is a syndrome of respiratory distress upon blood transfusion and is the leading cause of transfusion-related fatalities. Whether the gut microbiota plays any role in the development of TRALI is currently unknown. We observed that untreated barrier-free (BF) mice suffered from severe antibody-mediated acute lung injury, whereas the more sterile housed specific pathogen-free (SPF) mice and gut flora-depleted BF mice were both protected from lung injury. The prevention of TRALI in the SPF mice and gut flora-depleted BF mice was associated with decreased plasma macrophage inflammatory protein-2 levels as well as decreased pulmonary neutrophil accumulation. DNA sequencing of amplicons of the 16S ribosomal RNA gene revealed a varying gastrointestinal bacterial composition between BF and SPF mice. BF fecal matter transferred into SPF mice significantly restored TRALI susceptibility in SPF mice. These data reveal a link between the gut flora composition and the development of antibody-mediated TRALI in mice. Assessment of gut microbial composition may help in TRALI risk assessment before transfusion.


Asunto(s)
Quimiocina CXCL2/sangre , Microbioma Gastrointestinal , Pulmón/metabolismo , Neutrófilos/metabolismo , Lesión Pulmonar Aguda Postransfusional/microbiología , Animales , Pulmón/patología , Ratones , Neutrófilos/patología , Lesión Pulmonar Aguda Postransfusional/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA