Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
BMC Genomics ; 24(1): 543, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704968

RESUMEN

Macrocystis pyrifera (giant kelp), is a brown macroalga of great ecological importance as a primary producer and structure-forming foundational species that provides habitat for hundreds of species. It has many commercial uses (e.g. source of alginate, fertilizer, cosmetics, feedstock). One of the limitations to exploiting giant kelp's economic potential and assisting in giant kelp conservation efforts is a lack of genomic tools like a high quality, contiguous reference genome with accurate gene annotations. Reference genomes attempt to capture the complete genomic sequence of an individual or species, and importantly provide a universal structure for comparison across a multitude of genetic experiments, both within and between species. We assembled the giant kelp genome of a haploid female gametophyte de novo using PacBio reads, then ordered contigs into chromosome level scaffolds using Hi-C. We found the giant kelp genome to be 537 MB, with a total of 35 scaffolds and 188 contigs. The assembly N50 is 13,669,674 with GC content of 50.37%. We assessed the genome completeness using BUSCO, and found giant kelp contained 94% of the BUSCO genes from the stramenopile clade. Annotation of the giant kelp genome revealed 25,919 genes. Additionally, we present genetic variation data based on 48 diploid giant kelp sporophytes from three different Southern California populations that confirms the population structure found in other studies of these populations. This work resulted in a high-quality giant kelp genome that greatly increases the genetic knowledge of this ecologically and economically vital species.


Asunto(s)
Macrocystis , Macrocystis/genética , Genómica , Alginatos , Diploidia , Fertilizantes
2.
J Phycol ; 59(5): 879-892, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37596958

RESUMEN

Algal carbon-to-nitrogen (C:N) and carbon-to-phosphorus (C:P) ratios are fundamental for understanding many oceanic biogeochemical processes, such as nutrient flux and climate regulation. We synthesized literature data (444 species, >400 locations) and collected original samples from Tasmania, Australia (51 species, 10 locations) to update the global ratios of seaweed carbon-to-nitrogen (C:N) and carbon-to-phosphorus (C:P). The updated global mean molar ratio for seaweed C:N is 20 (ranging from 6 to 123) and for C:P is 801 (ranging from 76 to 4102). The C:N and C:P ratios were significantly influenced by seawater inorganic nutrient concentrations and seasonality. Additionally, C:N ratios varied by phyla. Brown seaweeds (Ochrophyta, Phaeophyceae) had the highest mean C:N of 27.5 (range: 7.6-122.5), followed by green seaweeds (Chlorophyta) of 17.8 (6.2-54.3) and red seaweeds (Rhodophyta) of 14.8 (5.6-77.6). We used the updated C:N and C:P values to compare seaweed tissue stoichiometry with the most recently reported values for plankton community stoichiometry. Our results show that seaweeds have on average 2.8 and 4.0 times higher C:N and C:P than phytoplankton, indicating seaweeds can assimilate more carbon in their biomass for a given amount of nutrient resource. The stoichiometric comparison presented herein is central to the discourse on ocean afforestation (the deliberate replacement of phytoplankton with seaweeds to enhance the ocean biological carbon sink) by contributing to the understanding of the impact of nutrient reallocation from phytoplankton to seaweeds under large-scale seaweed cultivation.

3.
Ecol Lett ; 24(10): 2192-2206, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34339096

RESUMEN

Disturbances often disproportionately impact different vegetation layers in forests and other vertically stratified ecosystems, shaping community structure and ecosystem function. However, disturbance-driven changes may be mediated by environmental conditions that affect habitat quality and species interactions. In a decade-long field experiment, we tested how kelp forest net primary productivity (NPP) responds to repeated canopy loss along a gradient in grazing and substrate suitability. We discovered that habitat quality can mediate the effects of intensified disturbance on canopy and understory NPP. Experimental annual and quarterly disturbances suppressed total macroalgal NPP, but effects were strongest in high-quality habitats that supported dense kelp canopies that were removed by disturbance. Understory macroalgae partly compensated for canopy NPP losses and this effect magnified with increasing habitat quality. Disturbance-driven increases in understory NPP were still rising after 5-10 years of disturbance, demonstrating the value of long-term experimentation for understanding ecosystem responses to changing disturbance regimes.


Asunto(s)
Ecosistema , Kelp , Bosques
4.
Ecol Appl ; 31(4): e02304, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33587791

RESUMEN

Distinguishing between human impacts and natural variation in abundance remains difficult because most species exhibit complex patterns of variation in space and time. When ecological monitoring data are available, a before-after-control-impact (BACI) analysis can control natural spatial and temporal variation to better identify an impact and estimate its magnitude. However, populations with limited distributions and confounding spatial-temporal dynamics can violate core assumptions of BACI-type designs. In this study, we assessed how such properties affect the potential to identify impacts. Specifically, we quantified the conditions under which BACI analyses correctly (or incorrectly) identified simulated anthropogenic impacts in a spatially and temporally replicated data set of fish, macroalgal, and invertebrate species found on nearshore subtidal reefs in southern California, USA. We found BACI failed to assess very localized impacts, and had low power but high precision when assessing region-wide impacts. Power was highest for severe impacts of moderate spatial scale, and impacts were most easily detected in species with stable, widely distributed populations. Serial autocorrelation in the data greatly inflated false impact detection rates, and could be partly controlled for statistically, while spatial synchrony in dynamics had no consistent effect on power or false detection rates. Unfortunately, species that offer high power to detect real impacts were also more likely to detect impacts where none had occurred. However, considering power and false detection rates together can identify promising indicator species, and collectively analyzing data for similar species improved the net ability to assess impacts. These insights set expectations for the sizes and severities of impacts that BACI analyses can detect in real systems, point to the importance of serial autocorrelation (but not of spatial synchrony), and indicate how to choose the species, and groups of species, that can best identify impacts.


Asunto(s)
Kelp , Animales , Ecosistema , Peces , Bosques , Humanos , Dinámica Poblacional
5.
Geophys Res Lett ; 48(24): e2021GL095908, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35860449

RESUMEN

Hypoxia has occurred intermittently in the Baltic Sea since the establishment of brackish-water conditions at ∼8,000 years B.P., principally as recurrent hypoxic events during the Holocene Thermal Maximum (HTM) and the Medieval Climate Anomaly (MCA). Sedimentary phosphorus release has been implicated as a key driver of these events, but previous paleoenvironmental reconstructions have lacked the sampling resolution to investigate feedbacks in past iron-phosphorus cycling on short timescales. Here we employ Laser Ablation (LA)-ICP-MS scanning of sediment cores to generate ultra-high resolution geochemical records of past hypoxic events. We show that in-phase multidecadal oscillations in hypoxia intensity and iron-phosphorus cycling occurred throughout these events. Using a box model, we demonstrate that such oscillations were likely driven by instabilities in the dynamics of iron-phosphorus cycling under preindustrial phosphorus loads, and modulated by external climate forcing. Oscillatory behavior could complicate the recovery from hypoxia during future trajectories of external loading reductions.

6.
J Phycol ; 56(1): 110-120, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31513719

RESUMEN

We conducted a population genetic analysis of the stalked kelp, Pterygophora californica, in the Santa Barbara Channel, California, USA. The results were compared with previous work on the genetic differentiation of giant kelp, Macrocystis pyrifera, in the same region. These two sympatric kelps not only share many life history and dispersal characteristics but also differ in that dislodged P. californica does not produce floating rafts with buoyant fertile sporophytes, commonly observed for M. pyrifera. We used a comparative population genetic approach with these two species to test the hypothesis that the ability to produce floating rafts increases the genetic connectivity among kelp patches in the Santa Barbara Channel. We quantified the association of habitat continuity and oceanographic distance with the genetic differentiation observed in stalked kelp, like previously conducted for giant kelp. We compared both overall (across all patches) and pairwise (between patches) genetic differentiation. We found that oceanographic transit time, habitat continuity, and geographic distance were all associated with genetic connectivity in P. californica, supporting similar previous findings for M. pyrifera. Controlling for differences in heterozygosity between kelp species using Jost's DEST , we showed that global differentiation and pairwise differentiation were similar among patches between the two kelp species, indicating that they have similar dispersal capabilities despite their differences in rafting ability. These results suggest that rafting sporophytes do not play a significant role in effective dispersal of M. pyrifera at ecologically relevant spatial and temporal scales.


Asunto(s)
Kelp , Macrocystis , Ecosistema , Genética de Población , Oceanografía
7.
Glob Chang Biol ; 25(9): 3179-3192, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31119829

RESUMEN

Globally, anthropogenic pressures are reducing the abundances of marine species and altering ecosystems through modification of trophic interactions. Yet, consumer declines also disrupt important bottom-up processes, like nutrient recycling, which are critical for ecosystem functioning. Consumer-mediated nutrient dynamics (CND) is now considered a major biogeochemical component of most ecosystems, but lacking long-term studies, it is difficult to predict how CND will respond to accelerating disturbances in the wake of global change. To aid such predictions, we coupled empirical ammonium excretion rates with an 18-year time series of the standing biomass of common benthic macroinvertebrates in southern California kelp forests. This time series of excretion rates encompassed an extended period of extreme ocean warming, disease outbreaks, and the abolishment of fishing at two of our study sites, allowing us to assess kelp forest CND across a wide range of environmental conditions. At their peak, reef invertebrates supplied an average of 18.3 ± 3.0 µmol NH4 +  m-2  hr-1 to kelp forests when sea stars were regionally abundant, but dropped to 3.5 ± 1.0 µmol NH4 +  m-2  hr-1 following their mass mortality due to disease during a prolonged period of extreme warming. However, a coincident increase in the abundance of the California spiny lobster, Palinurus interupptus (Randall, 1840), likely in response to both reduced fishing and a warmer ocean, compensated for much of the recycled ammonium lost to sea star mortality. Both lobsters and sea stars are widely recognized as key predators that can profoundly influence community structure in benthic marine systems. Our study is the first to demonstrate their importance in nutrient cycling, thus expanding their roles in the ecosystem. Climate change is increasing the frequency and severity of warming events, and rising human populations are intensifying fishing pressure in coastal ecosystems worldwide. Our study documents how these projected global changes can drive regime shifts in CND and fundamentally alter a critical ecosystem function.


Asunto(s)
Kelp , Animales , California , Ecosistema , Cadena Alimentaria , Bosques , Humanos , Nutrientes
8.
Proc Natl Acad Sci U S A ; 113(48): 13785-13790, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27849580

RESUMEN

Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = -0.018 y-1). Our analysis identified declines in 38% of ecoregions for which there are data (-0.015 to -0.18 y-1), increases in 27% of ecoregions (0.015 to 0.11 y-1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.


Asunto(s)
Ecosistema , Bosques , Kelp/crecimiento & desarrollo , Regiones Árticas , Cambio Climático , Océanos y Mares
9.
Proc Biol Sci ; 285(1874)2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540514

RESUMEN

Foundation species define the ecosystems they live in, but ecologists have often characterized dominant plants as foundational without supporting evidence. Giant kelp has long been considered a marine foundation species due to its complex structure and high productivity; however, there is little quantitative evidence to evaluate this. Here, we apply structural equation modelling to a 15-year time series of reef community data to evaluate how giant kelp affects the reef community. Although species richness was positively associated with giant kelp biomass, most direct paths did not involve giant kelp. Instead, the foundational qualities of giant kelp were driven mostly by indirect effects attributed to its dominant physical structure and associated engineering influence on the ecosystem, rather than by its use as food by invertebrates and fishes. Giant kelp structure has indirect effects because it shades out understorey algae that compete with sessile invertebrates. When released from competition, sessile species in turn increase the diversity of mobile predators. Sea urchin grazing effects could have been misinterpreted as kelp effects, because sea urchins can overgraze giant kelp, understorey algae and sessile invertebrates alike. Our results confirm the high diversity and biomass associated with kelp forests, but highlight how species interactions and habitat attributes can be misconstrued as direct consequences of a foundation species like giant kelp.


Asunto(s)
Biodiversidad , Ecosistema , Peces/fisiología , Invertebrados/fisiología , Macrocystis/fisiología , Animales , Cadena Alimentaria
10.
Ecology ; 99(11): 2442-2454, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30376154

RESUMEN

Disturbances often cause the disproportionate loss of foundation species but understanding how the frequency and severity of disturbance to such organisms influence biological communities remains unresolved. This gap in knowledge exists in part because of the rarity of ecologically meaningful studies capable of disentangling different elements of disturbance. Hence, we carried out a long-term (9 yr), large-scale (2,000 m2 plots), spatially replicated (4 sites) field experiment in which we manipulated disturbance to a globally distributed marine foundation species, the giant kelp Macrocystis pyrifera, and tracked community responses over time. To distinguish the effects of disturbance frequency and severity on the biodiversity and composition of temperate rocky reef communities, we simulated the repeated loss of giant kelp from destructive winter waves across a background of natural variation in disturbance. By following the response of over 200 taxa from the surrounding community, we discovered that the frequency of disturbance to giant kelp changed the biomass, diversity, and composition of community guilds in a manner commensurate with their dependence on the physical (i.e., benthic light and space), trophic (i.e., living and detrital biomass), and habitat (i.e., biogenic structure) resources mediated by this foundation species. Annual winter disturbance to giant kelp reduced living and detrital giant kelp biomass by 57% and 40%, respectively, enhanced bottom light by 22%, and halved the seafloor area covered by giant kelp holdfasts. Concomitantly, the biomass of understory algae and epilithic sessile invertebrates more than doubled, while the biomass of rock-boring clams, mobile invertebrates, and fishes decreased 30-61%. Frequent loss of giant kelp boosted understory algal richness by 82% and lowered sessile invertebrate richness by 13% but did not affect the biodiversity of mobile fauna. In contrast to changes driven by disturbance frequency, interannual variation in the severity of disturbance to giant kelp had weaker, less consistent effects, causing only modest changes in assemblages of sessile invertebrates, mobile invertebrate herbivores, and fishes. Our results broaden the foundation species concept by demonstrating that repeated disturbance to a dominant habitat-forming species can outweigh the influence of less frequent but severe disturbances for the surrounding community.


Asunto(s)
Kelp , Macrocystis , Animales , Ecosistema , Bosques , Invertebrados
11.
Ecology ; 99(9): 2132, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29956835

RESUMEN

The giant kelp Macrocystis pyrifera forms subtidal forests on shallow reefs in temperate regions of the world. It is one of the fastest-growing multicellular autotrophs on Earth and its high productivity supports diverse marine food webs. In 2008, we published a method for estimating biomass and net primary production (NPP) of giant kelp along with five years of data, to provide a more integrated measure of NPP than those yielded by previous methods. Our method combines monthly field measurements of standing crop and loss rates with a model of kelp biomass dynamics to estimate instantaneous mass-specific growth rates and NPP for each season of each year. We have since improved our approach to account for several previously unresolved sources of biomass loss. These improvements have led to a near doubling of our prior estimates of growth and NPP. At our site with the most persistent stand of giant kelp, NPP averages ~5.2 kg dry mass·m-2 ·yr-1 and results from the rapid growth (~3.5% per d) of a relatively small standing biomass (~0.4 kg dry mass/m2 on average) that turns over ~12 times annually. Here we provide revised estimates of seasonal biomass, growth, and NPP for the five years covered by our previous publication (2002-2006), along with more than a decade of additional data (2007-2017). We also present updated relationships for predicting giant kelp biomass and NPP from much more easily obtained measurements of frond density. These data can be used to understand the mechanisms that drive variation in giant kelp NPP at a wide range of temporal scales. No copyright or proprietary restrictions are associated with the use of this data set other than citation of this Data Paper.


Asunto(s)
Kelp , Macrocystis , Biomasa , California , Ecosistema
12.
Oecologia ; 186(1): 217-233, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29101467

RESUMEN

Identifying spatial scales of variation in natural communities and the processes driving them is critical for obtaining a predictive understanding of biodiversity. In this study, we focused on diverse communities inhabiting productive kelp forests on shallow subtidal rocky reefs in southern California, USA. We combined long-term community surveys from 86 sites with detailed environmental data to determine what structures assemblages of fishes, invertebrates and algae at multiple spatial scales. We identified the spatial scales of variation in species composition using a hierarchical analysis based on eigenfunctions, and assessed how sea surface temperature (SST), water column chlorophyll, giant kelp biomass, wave exposure and potential propagule delivery strength contributed to community variation at each scale. Spatial effects occurring at multiple scales explained 60% of the variation in fish assemblages and 52% of the variation in the assemblages of invertebrates and algae. Most variation occurred over broad spatial scales (> 200 km) consistent with spatial heterogeneity in SST and potential propagule delivery strength, while the latter also explained community variation at medium scales (65-200 km). Small scale (1-65 km) community variation was substantial but not linked to any of the measured drivers. Conclusions were consistent for both reef fishes and benthic invertebrates and algae, despite sharp differences in their adult mobility. Our results demonstrate the scale dependence of environmental drivers on kelp forest communities, showing that most species were strongly sorted along oceanographic conditions over various spatial scales. Such spatial effects must be integrated into models assessing the response of marine ecosystems to climate change.


Asunto(s)
Kelp , Animales , Biodiversidad , California , Ecosistema , Bosques
13.
BMC Evol Biol ; 17(1): 30, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28114901

RESUMEN

BACKGROUND: Molecular markers are revealing a much more diverse and evolutionarily complex picture of marine biodiversity than previously anticipated. Cryptic and/or endemic marine species are continually being found throughout the world oceans, predominantly in inconspicuous tropical groups but also in larger, canopy-forming taxa from well studied temperate regions. Interspecific hybridization has also been found to be prevalent in many marine groups, for instance within dense congeneric assemblages, with introgressive gene-flow being the most common outcome. Here, using a congeneric phylogeographic approach, we investigated two monotypic and geographically complementary sister genera of north-east Pacific intertidal seaweeds (Hesperophycus and Pelvetiopsis), for which preliminary molecular tests revealed unexpected conflicts consistent with unrecognized cryptic diversity and hybridization. RESULTS: The three recovered mtDNA clades did not match a priori species delimitations. H. californicus was congruent, whereas widespread P. limitata encompassed two additional narrow-endemic species from California - P. arborescens (here genetically confirmed) and P. hybrida sp. nov. The congruence between the genotypic clusters and the mtDNA clades was absolute. Fixed heterozygosity was apparent in a high proportion of loci in P. limitata and P. hybrida, with genetic analyses showing that the latter was composed of both H. californicus and P. arborescens genomes. All four inferred species could be distinguished based on their general morphology. CONCLUSIONS: This study confirmed additional diversity and reticulation within NE Pacific Hesperophycus/Pelvetiopsis, including the validity of the much endangered, modern climatic relict P. arborescens, and the identification of a new, stable allopolyploid species (P. hybrida) with clearly discernable ancestry (♀ H. californicus x ♂ P. arborescens), morphology, and geographical distribution. Allopolyploid speciation is otherwise completely unknown in brown seaweeds, and its unique occurrence within this genus (P. limitata possibly representing a second example) remains enigmatic. The taxonomic separation of Hesperophycus and Pelvetiopsis is not supported and the genera should be synonymized; we retain only the latter. The transitional coastline between Point Conception and Monterey Bay represented a diversity hotspot for the genus and the likely sites of extraordinary evolutionary events of allopolyploid speciation at sympatric range contact zones. This study pinpoints how much diversity (and evolutionary processes) potentially remains undiscovered even on a conspicuous seaweed genus from the well-studied Californian intertidal shores let alone in other, less studied marine groups and regions/depths.


Asunto(s)
Algas Marinas/genética , Animales , Biodiversidad , Evolución Biológica , California , ADN Mitocondrial/genética , Flujo Génico , Océano Pacífico , Filogenia , Filogeografía , Poliploidía , Algas Marinas/clasificación , Análisis de Secuencia de ADN
14.
Proc Biol Sci ; 284(1847)2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28123088

RESUMEN

Demographic connectivity is vital to sustaining metapopulations yet often changes dramatically through time due to variation in the production and dispersal of offspring. However, the relative importance of variation in fecundity and dispersal in determining the connectivity and dynamics of metapopulations is poorly understood due to the paucity of comprehensive spatio-temporal data on these processes for most species. We quantified connectivity in metapopulations of a marine foundation species (giant kelp Macrocystis pyrifera) across 11 years and approximately 900 km of coastline by estimating population fecundity with satellite imagery and propagule dispersal using a high-resolution ocean circulation model. By varying the temporal complexity of different connectivity measures and comparing their ability to explain observed extinction-colonization dynamics, we discovered that fluctuations in population fecundity, rather than fluctuations in dispersal, are the dominant driver of variation in connectivity and contribute substantially to metapopulation recovery and persistence. Thus, for species with high variability in reproductive output and modest variability in dispersal (most plants, many animals), connectivity measures ignoring fluctuations in fecundity may overestimate connectivity and likelihoods of persistence, limiting their value for understanding and conserving metapopulations. However, we demonstrate how connectivity measures can be simplified while retaining utility, validating a practical solution for data-limited systems.


Asunto(s)
Fertilidad , Kelp , Ecosistema , Modelos Biológicos , Dinámica Poblacional
15.
Proc Natl Acad Sci U S A ; 111(5): 1879-84, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449851

RESUMEN

Rapid advances in molecular microbial ecology have yielded an unprecedented amount of data about the evolutionary relationships and functional traits of microbial communities that regulate global geochemical cycles. Biogeochemical models, however, are trailing in the wake of the environmental genomics revolution, and such models rarely incorporate explicit representations of bacteria and archaea, nor are they compatible with nucleic acid or protein sequence data. Here, we present a functional gene-based framework for describing microbial communities in biogeochemical models by incorporating genomics data to provide predictions that are readily testable. To demonstrate the approach in practice, nitrogen cycling in the Arabian Sea oxygen minimum zone (OMZ) was modeled to examine key questions about cryptic sulfur cycling and dinitrogen production pathways in OMZs. Simulations support previous assertions that denitrification dominates over anammox in the central Arabian Sea, which has important implications for the loss of fixed nitrogen from the oceans. Furthermore, cryptic sulfur cycling was shown to attenuate the secondary nitrite maximum often observed in OMZs owing to changes in the composition of the chemolithoautotrophic community and dominant metabolic pathways. Results underscore the need to explicitly integrate microbes into biogeochemical models rather than just the metabolisms they mediate. By directly linking geochemical dynamics to the genetic composition of microbial communities, the method provides a framework for achieving mechanistic insights into patterns and biogeochemical consequences of marine microbes. Such an approach is critical for informing our understanding of the key role microbes play in modulating Earth's biogeochemistry.


Asunto(s)
Genes/genética , Metagenómica , Modelos Biológicos , Simulación por Computador , Sulfuro de Hidrógeno/metabolismo , Nitratos/metabolismo , Ciclo del Nitrógeno/genética , Océanos y Mares , Oxidación-Reducción , Oxígeno/metabolismo
16.
Bioscience ; 66(2): 156-163, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26977115

RESUMEN

Conservation and environmental management are principal countermeasures to the degradation of marine ecosystems and their services. However, in many cases, current practices are insufficient to reverse ecosystem declines. We suggest that restoration ecology, the science underlying the concepts and tools needed to restore ecosystems, must be recognized as an integral element for marine conservation and environmental management. Marine restoration ecology is a young scientific discipline, often with gaps between its application and the supporting science. Bridging these gaps is essential to using restoration as an effective management tool and reversing the decline of marine ecosystems and their services. Ecological restoration should address objectives that include improved ecosystem services, and it therefore should encompass social-ecological elements rather than focusing solely on ecological parameters. We recommend using existing management frameworks to identify clear restoration targets, to apply quantitative tools for assessment, and to make the re-establishment of ecosystem services a criterion for success.

17.
Oecologia ; 182(2): 397-404, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27342660

RESUMEN

The turnover of plant biomass largely determines the amount of energy flowing through an ecosystem and understanding the processes that regulate turnover has been of interest to ecologists for decades. Leaf life span theory has proven useful in explaining patterns of leaf turnover in relation to resource availability, but the predictions of this theory have not been tested for macroalgae. We measured blade life span, size, thickness, nitrogen content, pigment content, and maximum photosynthetic rate (P max) in the giant kelp (Macrocystis pyrifera) along a strong resource (light) gradient to test whether the predictions of leaf life span theory applied to this alga. We found that shorter blade life spans and larger blade areas were associated with increased light availability. In addition, nitrogen and P max decreased with blade age, and their decrease was greater in shorter lived blades. These observations are generally consistent with patterns observed for higher plants and the prevailing theory of leaf life span. By contrast, variation observed in pigments of giant kelp was inconsistent with that predicted by leaf life span theory, as blades growing in the most heavily shaded portion of the forest had the lowest chlorophyll content. This result may reflect the dual role of macroalgal blades in carbon fixation and nutrient absorption and the ability of giant kelp to modify blade physiology to optimize the acquisition of light and nutrients. Thus, the marine environment may place demands on resource acquisition and allocation that have not been previously considered with respect to leaf life span optimization.


Asunto(s)
Macrocystis/metabolismo , Clorofila/metabolismo , Ecosistema , Fotosíntesis
18.
Mol Ecol ; 24(19): 4866-85, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26339775

RESUMEN

At small spatial and temporal scales, genetic differentiation is largely controlled by constraints on gene flow, while genetic diversity across a species' distribution is shaped on longer temporal and spatial scales. We assess the hypothesis that oceanographic transport and other seascape features explain different scales of genetic structure of giant kelp, Macrocystis pyrifera. We followed a hierarchical approach to perform a microsatellite-based analysis of genetic differentiation in Macrocystis across its distribution in the northeast Pacific. We used seascape genetic approaches to identify large-scale biogeographic population clusters and investigate whether they could be explained by oceanographic transport and other environmental drivers. We then modelled population genetic differentiation within clusters as a function of oceanographic transport and other environmental factors. Five geographic clusters were identified: Alaska/Canada, central California, continental Santa Barbara, California Channel Islands and mainland southern California/Baja California peninsula. The strongest break occurred between central and southern California, with mainland Santa Barbara sites forming a transition zone between the two. Breaks between clusters corresponded approximately to previously identified biogeographic breaks, but were not solely explained by oceanographic transport. An isolation-by-environment (IBE) pattern was observed where the northern and southern Channel Islands clustered together, but not with closer mainland sites, despite the greater distance between them. The strongest environmental association with this IBE pattern was observed with light extinction coefficient, which extends suitable habitat to deeper areas. Within clusters, we found support for previous results showing that oceanographic connectivity plays an important role in the population genetic structure of Macrocystis in the Northern hemisphere.


Asunto(s)
Genética de Población , Macrocystis/genética , Alaska , California , Canadá , Ecosistema , Flujo Génico , Genotipo , México , Repeticiones de Microsatélite , Modelos Genéticos , Océano Pacífico , Filogeografía , Movimientos del Agua
19.
Ecology ; 96(12): 3141-52, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26909421

RESUMEN

Ecological theory predicts that demographic connectivity structures the dynamics of local populations within metapopulation systems, but empirical support has been constrained by major limitations in data and methodology. We tested this prediction for giant kelp Macrocystis pyrifera, a key habitat-forming species in temperate coastal ecosystems worldwide, in southern California, USA. We combined a long-term (22 years), large-scale (~500 km coastline), high-resolution census of abundance with novel patch delineation methods and an innovative connectivity measure incorporating oceanographic transport and source fecundity. Connectivity strongly predicted local dynamics (well-connected patches had lower probabilities of extinction and higher probabilities of colonization, leading to greater likelihoods of occupancy) but this relationship was mediated by patch size. Moreover, the relationship between connectivity and local population dynamics varied over time, possibly due to temporal variation in oceanographic transport processes. Surprisingly, connectivity had a smaller influence on colonization relative to extinction, possibly because local ecological factors differ greatly between extinct and extant patches. Our results provide the first comprehensive evidence that southern California giant kelp populations function as a metapopulation system, challenging the view that populations of this important foundation species are governed exclusively by self-replenishment.


Asunto(s)
Ecosistema , Macrocystis/fisiología , Monitoreo del Ambiente , Modelos Biológicos , Dinámica Poblacional , Factores de Tiempo
20.
Oecologia ; 179(4): 1199-209, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26358195

RESUMEN

Foundation species create milieus in which ecosystems evolve, altering species abundances and distribution often to a dramatic degree. Although much descriptive work supports their importance, there remains little definitive information on the mechanisms by which foundation species alter their environment. These mechanisms fall into two basic categories: provision of food or other materials, and modification of the physical environment. Here, we manipulated the abundance of a marine foundation species, the giant kelp Macrocystis pyrifera, in 40 × 40-m plots at Mohawk Reef off Santa Barbara, California and found that its biomass had a strong positive effect on the abundance of bottom-dwelling sessile invertebrates. We examined the carbon (C) stable isotope values of seven species of sessile invertebrates in the treatment plots to test the hypothesis that this positive effect resulted from a nutritional supplement of small suspended particles of kelp detritus, as many studies have posited. We found no evidence from stable isotope analyses to support the hypothesis that kelp detritus is an important food source for sessile suspension-feeding invertebrates. The isotope composition of invertebrates varied with species and season, but was not affected by kelp biomass, with the exception of two species: the tunicate Styela montereyensis, which exhibited a slight enrichment in C stable isotope composition with increasing kelp biomass, and the hydroid Aglaophenia sp., which showed the opposite effect. These results suggest that modification of the physical habitat, rather than nutritional subsidy by kelp detritus, likely accounts for increased abundance of sessile invertebrates within giant kelp forests.


Asunto(s)
Dieta , Ecosistema , Conducta Alimentaria , Invertebrados/fisiología , Kelp , Macrocystis , Animales , Biomasa , California , Carbono/metabolismo , Isótopos de Carbono/análisis , Ambiente , Invertebrados/crecimiento & desarrollo , Invertebrados/metabolismo , Kelp/crecimiento & desarrollo , Macrocystis/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA