RESUMEN
BACKGROUND: To eliminate cervical cancer as a public health problem, the World Health Organization had recommended routine vaccination of adolescent girls with two doses of the human papillomavirus (HPV) vaccine before sexual initiation. However, many countries have yet to implement HPV vaccination because of financial or logistical barriers to delivering two doses outside the infant immunisation programme. METHODS: Using three independent HPV transmission models, we estimated the long-term health benefits and cost-effectiveness of one-dose versus two-dose HPV vaccination, in 188 countries, under scenarios in which one dose of the vaccine gives either a shorter duration of full protection (20 or 30 years) or lifelong protection but lower vaccine efficacy (e.g. 80%) compared to two doses. We simulated routine vaccination with the 9-valent HPV vaccine in 10-year-old girls at 80% coverage for the years 2021-2120, with a 1-year catch-up campaign up to age 14 at 80% coverage in the first year of the programme. RESULTS: Over the years 2021-2120, one-dose vaccination at 80% coverage was projected to avert 115.2 million (range of medians: 85.1-130.4) and 146.8 million (114.1-161.6) cervical cancers assuming one dose of the vaccine confers 20 and 30 years of protection, respectively. Should one dose of the vaccine provide lifelong protection at 80% vaccine efficacy, 147.8 million (140.6-169.7) cervical cancer cases could be prevented. If protection wanes after 20 years, 65 to 889 additional girls would need to be vaccinated with the second dose to prevent one cervical cancer, depending on the epidemiological profiles of the country. Across all income groups, the threshold cost for the second dose was low: from 1.59 (0.14-3.82) USD in low-income countries to 44.83 (3.75-85.64) USD in high-income countries, assuming one dose confers 30-year protection. CONCLUSIONS: Results were consistent across the three independent models and suggest that one-dose vaccination has similar health benefits to a two-dose programme while simplifying vaccine delivery, reducing costs, and alleviating vaccine supply constraints. The second dose may become cost-effective if there is a shorter duration of protection from one dose, cheaper vaccine and vaccination delivery strategies, and high burden of cervical cancer.
Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Neoplasias del Cuello Uterino , Adolescente , Femenino , Lactante , Humanos , Niño , Análisis Costo-Beneficio , Virus del Papiloma Humano , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/prevención & control , Neoplasias del Cuello Uterino/epidemiología , Neoplasias del Cuello Uterino/prevención & control , VacunaciónRESUMEN
We aimed to quantify the health impact of immediate introduction of a single-dose human papillomavirus (HPV) vaccination program in a high-burden setting, as waiting until forthcoming trials are completed to implement single-dose HPV vaccination may result in health losses, particularly for cohorts who would age-out of vaccination eligibility. Two mathematical models fitted to a high-burden setting projected cervical cancer incidence rates associated with (a) immediate implementation of one-dose HPV vaccination vs (b) waiting 5 years for evidence from randomized trials to determine if one- or two-doses should be implemented. We conducted analyses assuming a single dose was either noninferior or inferior to two doses. The models projected that immediate implementation of a noninferior single-dose vaccine led to a 7.2% to 9.6% increase in cancers averted between 2021 to 2120, compared to waiting 5 years. Health benefits remained greater with immediate implementation despite an inferior single-dose efficacy (80%), but revaccination of one-dose recipients became more important assuming vaccine waning. Under most circumstances, immediate vaccination avoided health losses for those aging out of vaccine eligibility, leading to greater health benefits than waiting for more information in 5 years.
Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Incidencia , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/prevención & control , Neoplasias del Cuello Uterino/epidemiología , Neoplasias del Cuello Uterino/prevención & control , VacunaciónRESUMEN
BACKGROUND: Self-identified Black women in the United States have higher cervical cancer incidence and mortality than the general population, but these differences have not been clearly attributed across described cancer care inequities. METHODS: A previously established microsimulation model of cervical cancer was adapted to reflect demographic, screening, and survival data for Black US women and compared with a model reflecting data for all US women. Each model input with stratified data (all-cause mortality, hysterectomy rates, screening frequency, screening modality, follow-up, and cancer survival) was sequentially replaced with Black-race specific data to arrive at a fully specified model reflecting Black women. At each step, we estimated the relative contribution of inputs to observed disparities. RESULTS: Estimated (hysterectomy-adjusted) cervical cancer incidence was 8.6 per 100â000 in the all-race model vs 10.8 per 100â000 in the Black-race model (relative risk [RR] = 1.24, range = 1.23-1.27). Estimated all-race cervical cancer mortality was 2.9 per 100â000 vs 5.5 per 100â000 in the Black-race model (RR = 1.92, range = 1.85-2.00). We found the largest contributors of incidence disparities were follow-up from positive screening results (47.3% of the total disparity) and screening frequency (32.7%). For mortality disparities, the largest contributor was cancer survival differences (70.1%) followed by screening follow-up (12.7%). CONCLUSION: To reduce disparities in cervical cancer incidence and mortality, it is important to understand and address differences in care access and quality across the continuum of care. Focusing on the practices and policies that drive differences in treatment and follow-up from cervical abnormalities may have the highest impact.
Asunto(s)
Disparidades en el Estado de Salud , Disparidades en Atención de Salud , Neoplasias del Cuello Uterino , Femenino , Humanos , Carcinogénesis , Incidencia , Estados Unidos/epidemiología , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/epidemiología , Blanco , Negro o AfroamericanoRESUMEN
We evaluated how temporary disruptions to primary cervical cancer (CC) screening services may differentially impact women due to heterogeneity in their screening history and test modality. We used three CC models to project the short- and long-term health impacts assuming an underlying primary screening frequency (i.e., 1, 3, 5, or 10 yearly) under three alternative COVID-19-related screening disruption scenarios (i.e., 1-, 2-, or 5-year delay) versus no delay in the context of both cytology-based and human papillomavirus (HPV)-based screening. Models projected a relative increase in symptomatically detected cancer cases during a 1-year delay period that was 38% higher (Policy1-Cervix), 80% higher (Harvard), and 170% higher (MISCAN-Cervix) for underscreened women whose last cytology screen was 5 years prior to the disruption period compared with guidelines-compliant women (i.e., last screen 3 years prior to disruption). Over a woman's lifetime, temporary COVID-19-related delays had less impact on lifetime risk of developing CC than screening frequency and test modality; however, CC risks increased disproportionately the longer time had elapsed since a woman's last screen at the time of the disruption. Excess risks for a given delay period were generally lower for HPV-based screeners than for cytology-based screeners. Our independent models predicted that the main drivers of CC risk were screening frequency and screening modality, and the overall impact of disruptions from the pandemic on CC outcomes may be small. However, screening disruptions disproportionately affect underscreened women, underpinning the importance of reaching such women as a critical area of focus, regardless of temporary disruptions.
Asunto(s)
COVID-19 , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , COVID-19/epidemiología , Cuello del Útero , Detección Precoz del Cáncer , Femenino , Humanos , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/epidemiologíaRESUMEN
Background: We evaluated how temporary disruptions to primary cervical cancer (CC) screening services may differentially impact women due to heterogeneity in their screening history and test modality. Methods: We used three CC models to project the short- and long-term health impacts assuming an underlying primary screening frequency (i.e., 1, 3, 5, or 10 yearly) under three alternative COVID-19-related screening disruption scenarios (i.e., 1-, 2- or 5-year delay) versus no delay, in the context of both cytology-based and HPV-based screening. Results: Models projected a relative increase in symptomatically-detected cancer cases during a 1-year delay period that was 38% higher (Policy1-Cervix), 80% higher (Harvard) and 170% higher (MISCAN-Cervix) for under-screened women whose last cytology screen was 5 years prior to the disruption period compared with guidelines-compliant women (i.e., last screen three years prior to disruption). Over a woman's lifetime, temporary COVID-19-related delays had less impact on lifetime risk of developing CC than screening frequency and test modality; however, CC risks increased disproportionately the longer time had elapsed since a woman's last screen at the time of the disruption. Excess risks for a given delay period were generally lower for HPV-based screeners than for cytology-based screeners. Conclusions: Our independent models predicted that the main drivers of CC risk were screening frequency and screening modality, and the overall impact of disruptions from the pandemic on CC outcomes may be small. However, screening disruptions disproportionately affect under-screened women, underpinning the importance of reaching such women as a critical area of focus, regardless of temporary disruptions. Funding: This study was supported by funding from the National Cancer Institute (U01CA199334). The contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Cancer Institute. Megan A Smith receives salary support from the National Health and Medical Research Council, Australia (APP1159491) and Cancer Institute NSW (ECF181561). Matejka Rebolj is funded by Cancer Research UK (reference: C8162/A27047). James O'Mahony is funded by Ireland's Health Research Board (EIA2017054). Karen Canfell receives salary support from the National Health and Medical Research Council, Australia (APP1194679). Emily A. Burger receives salary support from the Norwegian Cancer Society.
RESUMEN
BACKGROUND: African-American women in the United States have an elevated risk of cervical cancer incidence and mortality. In the Mississippi Delta, cervical cancer disparities are particularly stark. METHODS: We conducted a micro-costing study alongside a group randomized trial that evaluated the efficacy of a patient-centered approach ("Choice" between self-collection at home for HPV testing or current standard of care within the public health system in Mississippi) versus the current standard of care ["Standard-of-care screening," involving cytology (i.e., Pap) and HPV co-testing at the Health Department clinics]. The interventions in both study arms were delivered by community health workers (CHW). Using cost, screening uptake, and colposcopy adherence data from the trial, we informed a mathematical model of HPV infection and cervical carcinogenesis to conduct a cost-effectiveness analysis comparing the "Choice" and "Standard-of-care screening" interventions among un/underscreened African-American women in the Mississippi Delta. RESULTS: When each intervention was simulated every 5 years from ages 25 to 65 years, the "Standard-of-care screening" strategy reduced cancer risk by 6.4% and was not an efficient strategy; "Choice" was more effective and efficient, reducing lifetime risk of cervical cancer by 14.8% and costing $62,720 per year of life saved (YLS). Screening uptake and colposcopy adherence were key drivers of intervention cost-effectiveness. CONCLUSIONS: Offering "Choice" to un/underscreened African-American women in the Mississippi Delta led to greater uptake than CHW-facilitated screening at the Health Department, and may be cost-effective. IMPACT: We evaluated the cost-effectiveness of an HPV self-collection intervention to reduce disparities.