Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Drug Discov Today ; 28(2): 103440, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36375739

RESUMEN

Harnessing the immune system to kill tumors has been revolutionary and, as a result, has had an enormous benefit for patients in extending life and resulting in effective cures in some. However, activation of the immune system can come at the cost of undesirable adverse events such as cytokine release syndrome, immune-related adverse events, on-target/off-tumor toxicity, neurotoxicity and tumor lysis syndrome, which are safety risks that can be challenging to assess non-clinically. This article provides a review of the biology and mechanisms that can result in immune-mediated adverse effects and describes industry approaches using in vitro and in vivo models to aid in the nonclinical safety risk assessments for immune-oncology modalities. Challenges and limitations of knowledge and models are also discussed.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Medición de Riesgo
2.
MAbs ; 14(1): 1979447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34923919

RESUMEN

Targeting immune checkpoint receptors expressed in the T cell synapse induces active and long-lasting antitumor immunity in preclinical tumor models and oncology patients. However, traditional nonhuman primate (NHP) studies in healthy animals have thus far demonstrated little to no pharmacological activity or toxicity for checkpoint inhibitors (CPIs), likely due to a quiescent immune system. We developed a NHP vaccine challenge model in Mauritius cynomolgus monkey (MCMs) that elicits a strong CD8+ T cell response to assess both pharmacology and safety within the same animal. MHC I-genotyped MCMs were immunized with three replication incompetent adenovirus serotype 5 (Adv5) encoding Gag, Nef and Pol simian immunodeficiency virus (SIV) proteins administered 4 weeks apart. Immunized animals received the anti-PD-L1 atezolizumab or an immune checkpoint-targeting bispecific antibody (mAbX) in early development. After a single immunization, Adv5-SIVs induced T-cell activation as assessed by the expression of several co-stimulatory and co-inhibitory molecules, proliferation, and antigen-specific T-cell response as measured by a Nef-dependent interferon-γ ELIspot and tetramer analysis. Administration of atezolizumab increased the number of Ki67+ CD8+ T cells, CD8+ T cells co-expressing TIM3 and LAG3 and the number of CD4+ T cells co-expressing 4-1BB, BTLA, and TIM3 two weeks after vaccination. Both atezolizumab and mAbX extended the cytolytic activity of the SIV antigen-specific CD8+ T cell up to 8 weeks. Taken together, this vaccine challenge model allowed the combined study of pharmacology and safety parameters for a new immunomodulatory protein-based therapeutic targeting CD8+ T cells in an NHP model.


Asunto(s)
Adenoviridae , Linfocitos T CD8-positivos/inmunología , Vacunas contra el SIDAS , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Evaluación de Medicamentos , Macaca fascicularis , Masculino , Vacunas contra el SIDAS/genética , Vacunas contra el SIDAS/inmunología , Vacunas contra el SIDAS/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/genética
3.
Front Immunol ; 13: 884113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677037

RESUMEN

Conventional treatment of chronic hepatitis B (CHB) is rarely curative due to the immunotolerant status of patients. RG7854 is an oral double prodrug of a toll-like receptor 7 (TLR7) agonist that is developed for the treatment of CHB. The therapeutic efficacy, host immune response, and safety of RG7854 were evaluated in the woodchuck model of CHB. Monotreatment with the two highest RG7854 doses and combination treatment with the highest RG7854 dose and entecavir (ETV) suppressed viral replication, led to loss of viral antigens, and induced seroconversion in responder woodchucks. Since viral suppression and high-titer antibodies persisted after treatment ended, this suggested that a sustained antiviral response (SVR) was induced by RG7854 in a subset of animals. The SVR rate, however, was comparable between both treatment regimens, suggesting that the addition of ETV did not enhance the therapeutic efficacy of RG7854 although it augmented the proliferation of blood cells in response to viral antigens and magnitude of antibody titers. The induction of interferon-stimulated genes in blood by RG7854/ETV combination treatment demonstrated on-target activation of TLR7. Together with the virus-specific blood cell proliferation and the transient elevations in liver enzymes and inflammation, this suggested that cytokine-mediated non-cytolytic and T-cell mediated cytolytic mechanisms contributed to the SVR, in addition to the virus-neutralizing effects by antibody-producing plasma cells. Both RG7854 regimens were not associated with treatment-limiting adverse effects but accompanied by dose-dependent, transient neutropenia and thrombocytopenia. The study concluded that finite, oral RG7854 treatment can induce a SVR in woodchucks that is based on the retrieval of antiviral innate and adaptive immune responses. This supports future investigation of the TLR7 agonist as an immunotherapeutic approach for achieving functional cure in patients with CHB.


Asunto(s)
Antivirales , Hepatitis B Crónica , Marmota , Seroconversión , Receptor Toll-Like 7 , Animales , Antígenos Virales , Antivirales/uso terapéutico , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/veterinaria , Receptor Toll-Like 7/agonistas
4.
Cell Chem Biol ; 29(4): 586-596.e4, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-34699747

RESUMEN

Harnessing the immunomodulatory activity of cytokines is a focus of therapies targeting inflammatory disease. The interleukin (IL)-1 superfamily contains pro-inflammatory and anti-inflammatory members that help orchestrate the immune response in adaptive and innate immunity. Of these molecules, IL-37 has robust anti-inflammatory activity across a range of disease models through inhibition of pro-inflammatory signaling cascades downstream of tumor necrosis factor, IL-1, and toll-like receptor pathways. We find that IL-37 is unstable with a poor pharmacokinetic and manufacturing profile. Here, we present the engineering of IL-37 from an unstable cytokine into an anti-inflammatory molecule with an excellent therapeutic likeness. We overcame these shortcomings through site-directed mutagenesis, the addition of a non-native disulfide bond, and the engineering of IL-37 as an Fc-fusion protein. Our results provide a platform for preclinical testing of IL-37 Fc-fusion proteins. The engineering approaches undertaken herein will apply to the conversion of similar potent yet short-acting cytokines into therapeutics.


Asunto(s)
Antiinflamatorios , Citocinas , Citocinas/metabolismo , Inmunidad Innata , Inmunomodulación , Ingeniería de Proteínas
5.
Toxicol Sci ; 150(2): 378-89, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26781512

RESUMEN

High density lipoprotein (HDL)-targeted therapies, which promote cholesterol efflux from cells, are currently in development for reducing cardiovascular events in acute coronary syndrome. Human apolipoprotein A-I (apoA-I), the major HDL protein, was fused to the trimerization domain of tetranectin (TN) and complexed with phospholipids to generate a HDL mimetic (lipidated TN-ApoA-I) with reduced renal clearance and enhanced efficacy. Cynomolgus monkeys received 24-h intravenous infusions of control, 100 mg/kg or 400 mg/kg lipidated TN-ApoA-I every 4 days for 3 weeks, followed by a 6-week recovery period. After multiple infusions of lipidated TN-ApoA-I, clinical condition deteriorated and was accompanied by changes indicative of a progressive inflammatory response; increased levels of cytokines, C-reactive protein and vascular/perivascular infiltrates in multiple tissues. Rapid formation of antidrug antibodies occurred in all animals receiving lipidated TN-ApoA-I. Enhanced drug clearance corresponding to a relative lack of high molecular weight immune complexes in blood, suggestive of preferred removal/clearance, was observed in some animals. Expected dose-dependent increases in serum lipids were accompanied by vacuolated monocytes/macrophages in multiple organs, which in the glomeruli were shown to be CD68-positive, contain lipid and co-localized with granular IgG deposits. Lipid accumulation may have been a direct result of a high drug load, possibly enhanced by immune complex formation, inflammation, and altered lipid metabolism. Noteworthy was the inter- individual inconsistency in the severity of clinical and histopathologic findings, drug clearance and inflammatory markers. In conclusion, multiple infusions of lipidated TN-ApoA-I resulted in high immunogenicity, lipid accumulation and were not well tolerated in nonhuman primates.


Asunto(s)
Complejo Antígeno-Anticuerpo/sangre , Apolipoproteína A-I/toxicidad , Lectinas Tipo C/administración & dosificación , Lípidos/sangre , Proteínas Recombinantes de Fusión/toxicidad , Animales , Apolipoproteína A-I/administración & dosificación , Apolipoproteína A-I/inmunología , Apolipoproteína A-I/farmacocinética , Proteína C-Reactiva/análisis , Citocinas/sangre , Relación Dosis-Respuesta a Droga , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Fibrinógeno/análisis , Inflamación/sangre , Inflamación/inducido químicamente , Infusiones Intravenosas , Lectinas Tipo C/inmunología , Lípidos/inmunología , Macaca fascicularis , Masculino , Tasa de Depuración Metabólica , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/farmacocinética
6.
Int J Alzheimers Dis ; 2012: 289412, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23316412

RESUMEN

The γ-secretase complex is a promising target in Alzheimer's disease because of its role in the amyloidogenic processing of ß-amyloid precursor protein. This enzyme also catalyzes the cleavage of Notch receptor, resulting in the nuclear translocation of intracellular Notch where it modulates gene transcription. Notch signaling is essential in cell fate decisions during embryogenesis, neuronal differentiation, hematopoiesis, and development of T and B cells, including splenic marginal zone (MZ) B cells. This B cell compartment participates in the early phases of the immune response to blood-borne bacteria and viruses. Chronic treatment with the oral γ-secretase inhibitor RO4929097 resulted in dose-dependent decreased cellularity (atrophy) of the MZ of rats and mice. Significant decreases in relative MZ B-cell numbers of RO4929097-treated animals were confirmed by flow cytometry. Numbers of MZ B cells reverted to normal after a sufficient RO4929097-free recovery period. Functional characterization of the immune response in relation to RO4929097-related MZ B cell decrease was assessed in mice vaccinated with inactivated vesicular stomatitis virus (VSV). Compared with the immunosuppressant cyclosporin A, RO4929097 caused only mild and reversible delayed early neutralizing IgM and IgG responses to VSV. Thus, the functional consequence of MZ B cell decrease on host defense is comparatively mild.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA