Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2310813, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700050

RESUMEN

The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.

2.
J Chem Phys ; 158(13): 134722, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37031150

RESUMEN

The recent transition to H2-based energy storage demands reliable H2 sensors that allow for easy, fast, and reliable detection of leaks. Conventional H2 detectors are based on the changes of physical properties of H2 probes induced by subsurface H-atoms to a material such as electrical conductivity. Herein, we report on highly reactive gasochromic H2 detectors based on the adsorption of H2 on the material surface. We prepared supraparticles (SPs) containing different types of noble metal nanoparticles (NPs), silica NPs, and the dye resazurin by spray-drying and tested their performance for H2 detection. The material undergoes a distinct color change due to the hydrogenation of the purple resazurin to pink resorufin and, finally, colorless hydroresorufin. The stepwise transition is fast and visible to the naked eye. To further improve the performance of the sensor, we tested the reactivity of SPs with different catalytically active NPs by means of in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). We show that the choice of the NP catalyst has a pronounced effect on the response of the H2 indicator. In addition, we demonstrate that the performance depends on the size of the NPs. These effects are attributed to the availability of reactive H-atoms on the NP surface. Among the materials studied, Pt-containing SPs gave the best results for H2 detection.

3.
Small ; 18(13): e2107511, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35146912

RESUMEN

(Sub)micrometer-scaled identification (ID) taggants enable direct identification of arbitrary goods, thereby opening up application fields based on the possibility of tracking, tracing, and anti-counterfeiting. Due to their small dimensions, these taggants can equip in principle even the smallest subcomponents or raw materials with information. To achieve the demanded applicability, the mostly used optically encoded ID taggants must be further improved. Here, micrometer-scaled supraparticles with spectrally encoded luminescent and magnetically encoded signal characteristics are reported. They are produced in a readily customizable bottom-up fabrication procedure that enables precise adjustment of luminescent and magnetic properties on multiple hierarchy levels. The incorporation of commonly used magnetic nanoparticles and fluorescent dyes, respectively, into polymer nanocomposite particles, establishes a convenient toolbox of magnetic and luminescent building blocks. The subsequent assembly of selected building blocks in the desired ratios into supraparticles grants for all the flexibility to freely adjust both signal characteristics. The obtained spectrally resolved visible luminescent and invisible magnetic ID signatures are complementary in nature, thus expanding applicability and information security compared to recently reported optical- or magnetic-encoded taggants. Additionally, the introduced ID taggant supraparticles can significantly enhance the coding capacity. Therefore, the introduced supraparticles are considered as next-generation ID taggants.


Asunto(s)
Luminiscencia , Nanopartículas , Magnetismo , Fenómenos Físicos
4.
Small ; 17(28): e2101588, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34085395

RESUMEN

Communicating objects are demanded for product security and the concepts of a circular economy or the Internet of Nano Things. Smart additives in the form of particles can be the key to equip objects with the desired materials intelligence as their miniaturized size improves applicability and security. Beyond their proposed identification by optical signals, magnetic signals deriving from magnetic particles can hypothetically be used for identification but are to date only resolved roughly. Herein, a magnetic particle-based toolbox is reported, that provides more than 77 billion (77 × 109 ) different magnetic codes, adjustable in one single particle, that can be read out unambiguously, easily, and quickly. The key towards achieving the vast code variety is a hierarchical supraparticle design that is inspired by music: similarly to how the line-up variation of a musical ensemble yields distinguishable overtones, the variation of the supraparticle composition alters their magnetic overtones. By minimizing magnetic interactions, customizable signals are spectrally decoded by the simple method of magnetic particle spectroscopy. A large number of chemically adjustable magnetic codes and the possibility of their remote, contactless detection from within materials is a breakthrough for unexploited labeling applications and pave the way towards materials intelligence.


Asunto(s)
Fenómenos Magnéticos , Magnetismo , Fenómenos Físicos
5.
Chem Commun (Camb) ; 60(45): 5840-5843, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38751319

RESUMEN

Dual-gasochromic supraparticles that undergo rapid eye-readable and gas-specific colour changes upon reaction with hydrogen or ammonia are reported. This functionality is achieved by tailoring the solid-liquid-gas interface within the mesoporous framework of supraparticles via spray-drying.

6.
Adv Mater ; 35(49): e2306728, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37786273

RESUMEN

Materials are the fundament of the physical world, whereas information and its exchange are the centerpieces of the digital world. Their fruitful synergy offers countless opportunities for realizing desired digital transformation processes in the physical world of materials. Yet, to date, a perfect connection between these worlds is missing. From the perspective, this can be achieved by overcoming the paradigm of considering materials as passive objects and turning them into perceptual, information-providing matter. This matter is capable of communicating associated digitally stored information, for example, its origin, fate, and material type as well as its intactness on demand. Herein, the concept of realizing perceptual, information-providing matter by integrating customizable (sub-)micrometer-sized communicating supraparticles (CSPs) is presented. They are assembled from individual nanoparticulate and/or (macro)molecular building blocks with spectrally differentiable signals that are either robust or stimuli-susceptible. Their combination yields functional signal characteristics that provide an identification signature and one or multiple stimuli-recorder features. This enables CSPs to communicate associated digital information on the tagged material and its encountered stimuli histories upon signal readout anywhere across its life cycle. Ultimately, CSPs link the materials and digital worlds with numerous use cases thereof, in particular fostering the transition into an age of sustainability.

7.
Adv Mater ; 34(31): e2202683, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35596261

RESUMEN

Small-sized temperature indicator additives autonomously record temperature events via a gradual irreversible signal change. This permits, for instance, the indication of possible cold-chain breaches or failure of electronics but also curing of glues. Thus, information about the materials' thermal history can be obtained upon signal detection at every point of interest. In this work, maximum-temperature indicators with magnetic readout based on micrometer-sized supraparticles (SPs) are introduced. The magnetic signal transduction is, by nature, independent of the materials' optical properties. This facilitates the determination of valuable temperature information from the inside, that is, the bulk, even of dark and opaque macroscopic objects, which might differ from their surface. Compared to state-of-the-art optical temperature indicators, complementary magnetic readout characteristics ultimately expand their applicability. The conceptualized SPs are hierarchically structured assemblies of environmentally friendly, inexpensive iron oxide nanoparticles and thermoplastic polymer. Irreversible structural changes, induced by polymer softening, yield magnetic interaction changes within and between the hierarchic sub-structures, which are distinguishable and define the temperature indication mechanism. The fundamental understanding of the SPs' working principle enables customization of the particles' working range, response time, and sensitivity, using a toolbox-like manufacturing approach. The magnetic signal change is detected self-referenced, fast, and contactless.

8.
ACS Nano ; 15(10): 16777-16787, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34570977

RESUMEN

In modern Li-based batteries, alloying anode materials have the potential to drastically improve the volumetric and specific energy storage capacity. For the past decade silicon has been viewed as a "Holy Grail" among these materials; however, severe stability issues limit its potential. Herein, we present amorphous substoichiometric silicon nitride (SiNx) as a convertible anode material, which allows overcoming the stability challenges associated with common alloying materials. Such material can be synthesized in a form of nanoparticles with seamlessly tunable chemical composition and particle size and, therefore, be used for the preparation of anodes for Li-based batteries directly through conventional slurry processing. Such SiNx materials were found to be capable of delivering high capacity that is controlled by the initial chemical composition of the nanoparticles. They exhibit an exceptional cycling stability, largely maintaining structural integrity of the nanoparticles and the complete electrodes, thus delivering stable electrochemical performance over the course of 1000 charge/discharge cycles. Such stability is achieved through the in situ conversion reaction, which was herein unambiguously confirmed by pair distribution function analysis of cycled SiNx nanoparticles revealing that active silicon domains and a stabilizing Li2SiN2 phase are formed in situ during the initial lithiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA