RESUMEN
BACKGROUND: The incidence of syphilis continues to increase in the United States, yet little is known about Treponema pallidum genomic epidemiology within American metropolitan areas. METHODS: We performed whole-genome sequencing and tprK deep sequencing of 28 T. pallidum-containing specimens, collected mostly from remnant Aptima swab specimens from 24 individuals from Seattle Sexual Health Clinic during 2021-2022. RESULTS: All 12 individuals infected with Nichols-lineage strains were men who have sex with men, while a specific SS14 cluster (mean, 0.33 single-nucleotide variant) included 1 man who has sex with women and 5 women. All T. pallidum strains sequenced were azithromycin resistant via 23S ribosomal RNA A2058G mutation. Identical T. pallidum genomic sequences were found in pharyngeal and rectal swab specimens taken concurrently from the same individuals. The tprK sequences were less variable between patient-matched specimens and between epidemiologically linked clusters. We detected a 528-base pair deletion in the tprK donor site locus, eliminating 9 donor sites, in T. pallidum genomes of 3 individuals with secondary syphilis, associated with diminution of TprK diversity. CONCLUSIONS: We developed an end-to-end workflow for public health genomic surveillance of T. pallidum from remnant Aptima swab specimens. tprK sequencing may assist in linking cases beyond routine T. pallidum genome sequencing. T. pallidum strains with deletions in tprK donor sites currently circulate and are associated with diminished TprK antigenic diversity.
Asunto(s)
Minorías Sexuales y de Género , Sífilis , Masculino , Femenino , Humanos , Treponema pallidum/genética , Homosexualidad Masculina , Secuencia de Aminoácidos , Sífilis/epidemiología , Variación Antigénica , GenómicaRESUMEN
BACKGROUND: Histologic and serologic studies suggest the induction of local and systemic Treponema pallidum-specific CD4+ T-cell responses to T. pallidum infection. We hypothesized that T. pallidum-specific CD4+ T cells are detectable in blood and in the skin rash of secondary syphilis and persist in both compartments after treatment. METHODS: Peripheral blood mononuclear cells collected from 67 participants were screened by interferon-γ (IFN-γ) ELISPOT response to T. pallidum sonicate. T. pallidum-reactive T-cell lines from blood and skin were probed for responses to 89 recombinant T. pallidum antigens. Peptide epitopes and HLA class II restriction were defined for selected antigens. RESULTS: We detected CD4+ T-cell responses to T. pallidum sonicate ex vivo. Using T. pallidum-reactive T-cell lines we observed recognition of 14 discrete proteins, 13 of which localize to bacterial membranes or the periplasmic space. After therapy, T. pallidum-specific T cells persisted for at least 6 months in skin and 10 years in blood. CONCLUSIONS: T. pallidum infection elicits an antigen-specific CD4+ T-cell response in blood and skin. T. pallidum-specific CD4+ T cells persist as memory in both compartments long after curative therapy. The T. pallidum antigenic targets we identified may be high-priority vaccine candidates.
Asunto(s)
Linfocitos T CD4-Positivos , Piel , Sífilis , Treponema pallidum , Humanos , Treponema pallidum/inmunología , Linfocitos T CD4-Positivos/inmunología , Sífilis/inmunología , Piel/inmunología , Piel/microbiología , Adulto , Masculino , Femenino , Proteínas de la Membrana/inmunología , Antígenos Bacterianos/inmunología , Persona de Mediana Edad , Interferón gamma/metabolismo , Proteínas Bacterianas/inmunología , Ensayo de Immunospot Ligado a Enzimas , Leucocitos Mononucleares/inmunología , Adulto JovenAsunto(s)
Antibacterianos , Azitromicina , Farmacorresistencia Bacteriana , Macrólidos , Sífilis , Treponema pallidum , Humanos , Antibacterianos/farmacología , Antibacterianos/provisión & distribución , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Macrólidos/farmacología , Macrólidos/uso terapéutico , América del Norte , Sífilis/tratamiento farmacológico , Sífilis/genética , Sífilis/microbiología , Treponema pallidum/efectos de los fármacos , Treponema pallidum/genética , Treponema pallidum/aislamiento & purificación , Azitromicina/farmacología , Azitromicina/uso terapéutico , Estados Unidos , Canadá , Penicilina G Benzatina/farmacología , Penicilina G Benzatina/provisión & distribución , Penicilina G Benzatina/uso terapéutico , Doxiciclina/farmacología , Doxiciclina/provisión & distribución , Doxiciclina/uso terapéuticoRESUMEN
An effective mechanism for introduction of phenotypic diversity within a bacterial population exploits changes in the length of repetitive DNA elements located within gene promoters. This phenomenon, known as phase variation, causes rapid activation or silencing of gene expression and fosters bacterial adaptation to new or changing environments. Phase variation often occurs in surface-exposed proteins, and in Treponema pallidum subsp. pallidum, the syphilis agent, it was reported to affect transcription of three putative outer membrane protein (OMP)-encoding genes. When the T. pallidum subsp. pallidum Nichols strain genome was initially annotated, the TP0126 open reading frame was predicted to include a poly(G) tract and did not appear to have a predicted signal sequence that might suggest the possibility of its being an OMP. Here we show that the initial annotation was incorrect, that this poly(G) is instead located within the TP0126 promoter, and that it varies in length in vivo during experimental syphilis. Additionally, we show that TP0126 transcription is affected by changes in the poly(G) length consistent with regulation by phase variation. In silico analysis of the TP0126 open reading frame based on the experimentally identified transcriptional start site shortens this hypothetical protein by 69 amino acids, reveals a predicted cleavable signal peptide, and suggests structural homology with the OmpW family of porins. Circular dichroism of recombinant TP0126 supports structural homology to OmpW. Together with the evidence that TP0126 is fully conserved among T. pallidum subspecies and strains, these data suggest an important role for TP0126 in T. pallidum biology and syphilis pathogenesis.
Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Guanosina/química , Transcripción Genética , Treponema pallidum/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Secuencia de Bases , Humanos , Inmunidad Humoral , Modelos Moleculares , Conformación Proteica , Conejos , Proteínas Recombinantes/metabolismo , Sífilis/microbiología , Sitio de Iniciación de la TranscripciónRESUMEN
Although primary syphilis lesions heal spontaneously, the infection is chronic, with subsequent clinical stages. Healing of the primary chancre occurs as antibodies against outer membrane antigens facilitate opsonophagocytosis of the bacteria by activated macrophages. TprK is an outer membrane protein that undergoes antigenic variation at 7 variable regions, and variants are selected by immune pressure. We hypothesized that individual TprK variants escape immune clearance and seed new disseminated lesions to cause secondary syphilis. As in human syphilis, infected rabbits may develop disseminated secondary skin lesions. This study explores the nature of secondary syphilis, specifically, the contribution of antigenic variation to the development of secondary lesions. Our data from the rabbit model show that the odds of secondary lesions containing predominately TprK variant treponemes is 3.3 times higher than the odds of finding TprK variants in disseminated primary lesions (odds ratio [OR] = 3.3 [95% confidence interval {CI}, 0.98 to 11.0]; P = 0.055) and that 96% of TprK variant secondary lesions are likely seeded by single treponemes. Analysis of antibody responses demonstrates significantly higher antibody titers to tprK variable region sequences found in the inoculum compared to reactivity to tprK variant sequences found in newly arising secondary lesions. This suggests that tprK variants escape the initial immune response raised against the V regions expressed in the inoculum. These data further support a role for TprK in immune evasion and suggest that the ability of TprK variants to persist despite a robust immune response is instrumental in the development of later stages of syphilis.
Asunto(s)
Variación Antigénica , Proteínas Bacterianas/inmunología , Porinas/inmunología , Sífilis/inmunología , Sífilis/microbiología , Treponema pallidum/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Evasión Inmune , Masculino , Porinas/genética , Conejos , Piel/patología , Treponema pallidum/genéticaRESUMEN
Background: Histologic and serologic studies suggest the induction of local and systemic Treponema pallidum ( Tp )-specific CD4+ T cell responses to Tp infection. We hypothesized that Tp -specific CD4+ T cells are detectable in blood and in the skin rash of secondary syphilis and persist in both compartments after treatment. Methods: PBMC collected from 67 participants were screened by IFNγ ELISPOT response to Tp sonicate. Tp -reactive T cell lines from blood and skin were probed for responses to 88 recombinant Tp antigens. Peptide epitopes and HLA class II restriction were defined for selected antigens. Results: We detected CD4+ T cell responses to Tp sonicate ex vivo. Using Tp -reactive T cell lines we observed recognition of 14 discrete proteins, 13 of which localize to bacterial membranes or the periplasmic space. After therapy, Tp -specific T cells persisted for at least 6 months in skin and 10 years in blood. Conclusions: Tp infection elicits an antigen-specific CD4+ T cell response in blood and skin. Tp -specific CD4+ T cells persist as memory in both compartments long after curative therapy. The Tp antigenic targets we identified may be high priority vaccine candidates.