RESUMEN
Protein mechanical stability determines the function of a myriad of proteins, especially proteins from the extracellular matrix. Failure to maintain protein mechanical stability may result in diseases and disorders such as cancer, cardiomyopathies, or muscular dystrophy. Thus, developing mutation-free approaches to enhance and control the mechanical stability of proteins using pharmacology-based methods may have important implications in drug development and discovery. Here, we present the first approach that employs computational high-throughput virtual screening and molecular docking to search for small molecules in chemical libraries that function as mechano-regulators of the stability of human cluster of differentiation 4, receptor of HIV-1. Using single-molecule force spectroscopy, we prove that these small molecules can increase the mechanical stability of CD4D1D2 domains over 4-fold in addition to modifying the mechanical unfolding pathways. Our experiments demonstrate that chemical libraries are a source of mechanoactive molecules and that drug discovery approaches provide the foundation of a new type of molecular function, that is, mechano-regulation, paving the way toward mechanopharmacology.
Asunto(s)
Antígenos CD4 , Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas , Humanos , Antígenos CD4/metabolismo , Antígenos CD4/química , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , VIH-1/metabolismo , VIH-1/química , Simulación del Acoplamiento Molecular , Estabilidad Proteica , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacologíaRESUMEN
The pathogenic bacterium Yersina pestis is protected from macrophage engulfment by a capsule like antigen, F1, formed of long polymers of the monomer protein, Caf1. However, despite the importance of this pathogen, the mechanism of protection was not understood. Here we demonstrate how F1 protects the bacteria from phagocytosis. First, we show that Escherichia coli expressing F1 showed greatly reduced adherence to macrophages. Furthermore, the few cells that did adhere remained on the macrophage surface and were not engulfed. We then inserted, by mutation, an "RGDS" integrin binding motif into Caf1. This did not change the number of cells adhering to macrophages but increased the fraction of adherent cells that were engulfed. Therefore, F1 protects in two separate ways, reducing cell adhesion, possibly by acting as a polymer brush, and hiding innate receptor binding sites needed for engulfment. F1 is very robust and we show that E. coli expressing weakened mutant polymers are engulfed like the RGDS mutant. This suggests that innate attachment sites on the native cell surface are exposed if F1 is weakened. Single-molecule force spectroscopy (SMFS) experiments revealed that wild-type F1 displays a very high mechanical stability of 400 pN. However, the mechanical resistance of the destabilised mutants, that were fully engulfed, was only 20% weaker. By only marginally exceeding the mechanical force applied to the Caf1 polymer during phagocytosis it may be that the exceptional tensile strength evolved to resist the forces applied at this stage of engulfment.
Asunto(s)
Peste , Yersinia pestis , Antígenos Bacterianos , Proteínas Bacterianas/genética , Escherichia coli/genética , Humanos , Polímeros , Yersinia pestis/genéticaRESUMEN
Herein, we report a multifunctional chemoenzymatic nanoreactor (NanoNOx) for the glucose-controlled regeneration of natural and artificial nicotinamide cofactors. NanoNOx are built of glucose oxidase-polymer hybrids that assemble in the presence of an organometallic catalyst: hemin. The design of the hybrid is optimized to increase the effectiveness and the directional channeling at low substrate concentration. Importantly, NanoNOx can be reutilized without affecting the catalytic properties, can show high stability in the presence of organic solvents, and can effectively oxidize assorted natural and artificial enzyme cofactors. Finally, the hybrid was successfully coupled with NADH-dependent dehydrogenases in one-pot reactions, using a strategy based on the sequential injection of a fuel, namely, glucose. Hence, this study describes the first example of a hybrid chemoenzymatic nanomaterial able to efficiently mimic NOx enzymes in cooperative one-pot cascade reactions.
Asunto(s)
NADPH Oxidasas , NAD , Biocatálisis , Coenzimas/química , Glucosa , Glucosa Oxidasa , Hemina , NAD/metabolismo , Nanotecnología , Niacinamida , Oxidorreductasas , Polímeros , Regeneración , SolventesRESUMEN
Bacterial adhesins are cell-surface proteins that anchor to the cell wall of the host. The first stage of infection involves the specific attachment to fibrinogen (Fg), a protein found in human blood. This attachment allows bacteria to colonize tissues causing diseases such as endocarditis. The study of this family of proteins is hence essential to develop new strategies to fight bacterial infections. In the case of the Gram-positive bacterium Staphylococcus aureus, there exists a class of adhesins known as microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Here, we focus on one of them, the clumping factor A (ClfA), which has been found to bind Fg through the dock-lock-latch mechanism. Interestingly, it has recently been discovered that MSCRAMM proteins employ a catch-bond to withstand forces exceeding 2 nN, making this type of interaction as mechanically strong as a covalent bond. However, it is not known whether this strength is an evolved feature characteristic of the bacterial protein or is typical only of the interaction with its partner. Here, we combine single-molecule force spectroscopy, biophysical binding assays, and molecular simulations to study the intrinsic mechanical strength of ClfA. We find that despite the extremely high forces required to break its interactions with Fg, ClfA is not by itself particularly strong. Integrating the results from both theory and experiments we dissect contributions to the mechanical stability of this protein.
Asunto(s)
Coagulasa , Fibrinógeno , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/química , Coagulasa/metabolismo , Coagulasa/química , Fibrinógeno/química , Fibrinógeno/metabolismo , Unión Proteica , Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/química , Humanos , Estabilidad ProteicaRESUMEN
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9 is an effector protein that targets invading DNA and plays a major role in the prokaryotic adaptive immune system. Although Streptococcus pyogenes CRISPR-Cas9 has been widely studied and repurposed for applications including genome editing, its origin and evolution are poorly understood. Here, we investigate the evolution of Cas9 from resurrected ancient nucleases (anCas) in extinct firmicutes species that last lived 2.6 billion years before the present. We demonstrate that these ancient forms were much more flexible in their guide RNA and protospacer-adjacent motif requirements compared with modern-day Cas9 enzymes. Furthermore, anCas portrays a gradual palaeoenzymatic adaptation from nickase to double-strand break activity, exhibits high levels of activity with both single-stranded DNA and single-stranded RNA targets and is capable of editing activity in human cells. Prediction and characterization of anCas with a resurrected protein approach uncovers an evolutionary trajectory leading to functionally flexible ancient enzymes.