Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Circulation ; 139(1): 119-133, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30586707

RESUMEN

BACKGROUND: We have previously shown that activation of cell-autonomous innate immune signaling facilitates the transdifferentiation of fibroblasts into induced endothelial cells, and is required to generate induced endothelial cells with high fidelity for endothelial lineage. Recent studies indicate that a glycolytic switch plays a role in induced pluripotent stem cell generation from somatic cells. METHODS: Seahorse and metabolomics flux assays were used to measure the metabolic changes during transdifferentiation in vitro, and Matrigel plug assay was used to assess the effects of glycolysis modulators on transdifferentiation in vivo. RESULTS: The metabolic switch begins rapidly after activation of innate immunity, before the expression of markers of endothelial lineage. Inhibiting glycolysis impaired, whereas facilitating glycolysis enhanced, the generation of induced endothelial cells. The toll-like receptor 3 agonist poly I:C increased expression of the mitochondrial citrate transporter Slc25A1, and the nuclear ATP-citrate lyase, in association with intracellular accumulation of citrate, the precursor for acetyl coenzyme A. These metabolic changes were coordinated with increased histone acetylation during transdifferentiation. CONCLUSION: Innate immune signaling promotes a glycolytic switch that is required for transdifferentiation, both processes being attenuated by ATP-citrate lyase knockdown. These data shed light on a novel link between metabolism and epigenetic modulation in transdifferentiation.


Asunto(s)
Linaje de la Célula , Transdiferenciación Celular , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Glucólisis , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Acetilación , Animales , Linaje de la Célula/efectos de los fármacos , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Ácido Cítrico/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Epigénesis Genética , Fibroblastos/efectos de los fármacos , Fibroblastos/inmunología , Glucólisis/efectos de los fármacos , Histonas/metabolismo , Inmunidad Innata , Ratones Endogámicos NOD , Ratones SCID , Proteínas Mitocondriales , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Fenotipo , Poli I-C/farmacología , Transducción de Señal , Receptor Toll-Like 3/agonistas , Receptor Toll-Like 3/metabolismo
2.
FASEB J ; 33(1): 711-721, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30024790

RESUMEN

Coordinated changes in signaling pathways and gene expression in hearts subjected to prolonged stress maintain cardiac function. Loss of steroid receptor coactivator-2 (SRC-2) results in a reversal to the fetal gene program and disrupts the response to pressure overload, accompanied by prominent effects on metabolism and growth signaling, including increased AMPK activation. We proposed that early metabolic stress driven by AMPK activation induces contractile dysfunction in mice lacking SRC-2. We used 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to activate AMPK transiently before transverse aortic constriction (TAC) in wild-type and cardiomyocyte-specific SRC-2 knockout (CKO) animals. In contrast to AMPK activities during stress, in unstressed hearts, AICAR induced a mild activation of Akt signaling, and, in SRC-2-CKO mice, partially relieved an NAD+ deficiency and increased antioxidant signaling. These molecular changes translated to a mild hypertrophic response to TAC with decreased maladaptive remodeling, including markedly decreased fibrosis. Additionally, preactivation of AMPK in SRC-2-CKO mice was accompanied by a dramatic improvement in cardiac function compared with saline-treated SRC-2-CKO mice. Our results show that altered molecular signaling before stress onset has extended effects on sustained cardiac stress responses, and prestress modulation of transient growth and metabolism pathways may control those effects.-Nam, D. H., Kim, E., Benham, A., Park, H.-K., Soibam, B., Taffet, G. E., Kaelber, J. T., Suh, J. H., Taegtmeyer, H., Entman, M. L., Reineke, E. L. Transient activation of AMPK preceding left ventricular pressure overload reduces adverse remodeling and preserves left ventricular function.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Cardiomegalia/prevención & control , Coactivador 2 del Receptor Nuclear/fisiología , Ribonucleótidos/farmacología , Función Ventricular Izquierda/fisiología , Presión Ventricular , Remodelación Ventricular/fisiología , Proteínas Quinasas Activadas por AMP/genética , Aminoimidazol Carboxamida/farmacología , Animales , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Hipoglucemiantes/farmacología , Masculino , Ratones , Ratones Noqueados , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
3.
J Biol Chem ; 292(52): 21643-21652, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29127200

RESUMEN

Pressure overload-induced cardiac stress induces left ventricular hypertrophy driven by increased cardiomyocyte mass. The increased energetic demand and cardiomyocyte size during hypertrophy necessitate increased fuel and oxygen delivery and stimulate angiogenesis in the left ventricular wall. We have previously shown that the transcriptional regulator steroid receptor coactivator-2 (SRC-2) controls activation of several key cardiac transcription factors and that SRC-2 loss results in extensive cardiac transcriptional remodeling. Pressure overload in mice lacking SRC-2 induces an abrogated hypertrophic response and decreases sustained cardiac function, but the cardiomyocyte-specific effects of SRC-2 in these changes are unknown. Here, we report that cardiomyocyte-specific loss of SRC-2 (SRC-2 CKO) results in a blunted hypertrophy accompanied by a rapid, progressive decrease in cardiac function. We found that SRC-2 CKO mice exhibit markedly decreased left ventricular vasculature in response to transverse aortic constriction, corresponding to decreased expression of the angiogenic factor VEGF. Of note, SRC-2 knockdown in cardiomyocytes decreased VEGF expression and secretion to levels sufficient to blunt in vitro tube formation and proliferation of endothelial cells. During pressure overload, both hypertrophic and hypoxic signals can stimulate angiogenesis, both of which stimulated SRC-2 expression in vitro Furthermore, SRC-2 coactivated the transcription factors GATA-binding protein 4 (GATA-4) and hypoxia-inducible factor (HIF)-1α and -2α in response to angiotensin II and hypoxia, respectively, which drive VEGF expression. These results suggest that SRC-2 coordinates cardiomyocyte secretion of VEGF downstream of the two major angiogenic stimuli occurring during pressure overload bridging both hypertrophic and hypoxia-stimulated paracrine signaling.


Asunto(s)
Coactivador 2 del Receptor Nuclear/metabolismo , Inductores de la Angiogénesis/metabolismo , Angiotensina II/metabolismo , Animales , Ventrículos Cardíacos/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Neovascularización Patológica/metabolismo , Comunicación Paracrina/fisiología , Activación Transcripcional , Factor A de Crecimiento Endotelial Vascular/metabolismo , Remodelación Ventricular
4.
J Biol Chem ; 289(25): 17721-31, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24811170

RESUMEN

We have previously demonstrated the potential role of steroid receptor coactivator-2 (SRC-2) as a co-regulator in the transcription of critical molecules modulating cardiac function and metabolism in normal and stressed hearts. The present study seeks to extend the previous information by demonstrating SRC-2 fulfills this role by serving as a critical coactivator for the transcription and activity of critical transcription factors known to control cardiac growth and metabolism as well as in their downstream signaling. This knowledge broadens our understanding of the mechanism by which SRC-2 acts in normal and stressed hearts and allows further investigation of the transcriptional modifications mediating different types and degrees of cardiac stress. Moreover, the genetic manipulation of SRC-2 in this study is specific for the heart and thereby eliminating potential indirect effects of SRC-2 deletion in other organs. We have shown that SRC-2 is critical to transcriptional control modulated by MEF2, GATA-4, and Tbx5, thereby enhancing gene expression associated with cardiac growth. Additionally, we describe SRC-2 as a novel regulator of PPARα expression, thus controlling critical steps in metabolic gene expression. We conclude that through regulation of cardiac transcription factor expression and activity, SRC-2 is a critical transcriptional regulator of genes important for cardiac growth, structure, and metabolism, three of the main pathways altered during the cardiac stress response.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Factores de Transcripción/metabolismo , Animales , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Miocardio/citología , Coactivador 2 del Receptor Nuclear/genética , Factores de Transcripción/genética
5.
Proc Natl Acad Sci U S A ; 109(21): E1377-86, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22556267

RESUMEN

The Sleeping Beauty (SB) transposon mutagenesis system is a powerful tool that facilitates the discovery of mutations that accelerate tumorigenesis. In this study, we sought to identify mutations that cooperate with MYC, one of the most commonly dysregulated genes in human malignancy. We performed a forward genetic screen with a mouse model of MYC-induced liver cancer using SB-mediated mutagenesis. We sequenced insertions in 63 liver tumor nodules and identified at least 16 genes/loci that contribute to accelerated tumor development. RNAi-mediated knockdown in a liver progenitor cell line further validate three of these genes, Ncoa2/Src-2, Zfx, and Dtnb, as tumor suppressors in liver cancer. Moreover, deletion of Ncoa2/Src-2 in mice predisposes to diethylnitrosamine-induced liver tumorigenesis. These findings reveal genes and pathways that functionally restrain MYC-mediated liver tumorigenesis and therefore may provide targets for cancer therapy.


Asunto(s)
Carcinoma Hepatocelular/genética , Análisis Mutacional de ADN/métodos , Genes Supresores de Tumor , Neoplasias Hepáticas/genética , Coactivador 2 del Receptor Nuclear/genética , Transposasas/genética , Alquilantes/toxicidad , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Dietilnitrosamina/toxicidad , Modelos Animales de Enfermedad , Femenino , Genes myc/genética , Células HEK293 , Humanos , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Desnudos , Ratones Transgénicos , Trasplante de Neoplasias , Trasplante Heterólogo
6.
J Mol Cell Cardiol ; 57: 59-67, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23337087

RESUMEN

Angiotensin-II (Ang-II) is associated with many conditions involving heart failure and pathologic hypertrophy. Ang-II induces the synthesis of monocyte chemoattractant protein-1 that mediates the uptake of CD34(+)CD45(+) monocytic cells into the heart. These precursor cells differentiate into collagen-producing fibroblasts and are responsible for the Ang-II-induced development of non-adaptive cardiac fibrosis. In this study, we demonstrate that in vitro, using a human monocyte-to-fibroblast differentiation model, Ang-II required the presence of tumor necrosis factor-alpha (TNF) to induce fibroblast maturation from monocytes. In vivo, mice deficient in both TNF receptors did not develop cardiac fibrosis in response to 1week Ang-II infusion. We then subjected mice deficient in either TNF receptor 1 (TNFR1-KO) or TNF receptor 2 (TNFR2-KO) to continuous Ang-II infusion. Compared to wild-type, in TNFR1-KO, but not in TNFR2-KO hearts, collagen deposition was greatly attenuated, and markedly fewer CD34(+)CD45(+) cells were present. Quantitative RT-PCR demonstrated a striking reduction of key fibrosis-related, as well as inflammation-related mRNA expression in Ang-II-treated TNFR1-KO hearts. TNFR1-KO animals also developed less cardiac remodeling, cardiac hypertrophy, and hypertension compared to wild-type and TNFR2-KO in response to Ang-II. Our data suggest that TNF induced Ang-II-dependent cardiac fibrosis by signaling through TNFR1, which enhances the generation of monocytic fibroblast precursors in the heart.


Asunto(s)
Angiotensina II/fisiología , Cardiomegalia/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Animales , Cardiomegalia/patología , Diferenciación Celular , Tamaño de la Célula , Células Cultivadas , Técnicas de Cocultivo , Colágeno/metabolismo , Citocinas/genética , Citocinas/metabolismo , Fibrosis , Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Migración Transendotelial y Transepitelial , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/fisiología
7.
J Biol Chem ; 286(52): 44403-11, 2011 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-22033920

RESUMEN

The promyelocytic leukemia (PML) protein is a tumor suppressor that has an important role in several cellular processes, including apoptosis, viral infection, DNA damage repair, cell cycle regulation, and senescence. PML is an essential component of sub-nuclear structures called PML nuclear bodies (NBs). Our laboratory has previously demonstrated that the peptidyl-prolyl cis-trans isomerase, Pin1, binds and targets PML for degradation in a phosphorylation-dependent manner. To further elucidate the mechanisms underlying Pin1-mediated PML degradation, we aimed to identify one or more factors that promote PML phosphorylation. Here we show that treatment with U0126, an inhibitor of the ERK2 upstream kinases MEK1/2, leads to an increase in PML protein accumulation and an inhibition of the interaction between Pin1 and PML in MDA-MB-231 breast cancer cells. Consistent with this observation, phosphorylated ERK2 partially co-localized with PML NBs. Although U0126 up-regulated exogenous wild-type PML levels, it did not have an effect on the steady-state level of a mutant form of PML that is defective in binding Pin1. In addition, exogenous wild-type, but not Pin1 binding-defective PML protein expression levels were decreased by overexpression of ERK2. In contrast, knockdown of ERK2 by siRNA resulted in an increase in PML protein levels and an increase in the formation of PML NBs. Using phospho-specific antibodies, we identified Ser-403 and Ser-505 as the ERK2 targets that promote Pin1-mediated PML degradation. Finally, we demonstrated that EGF induced activation of ERK and interaction between PML and phosphorylated ERK resulting in a decrease in PML protein levels. Taken together, our results support a model in which Pin1 promotes PML degradation in an ERK2-dependent manner.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Proteolisis , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Butadienos/farmacología , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Humanos , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 2/metabolismo , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Peptidilprolil Isomerasa de Interacción con NIMA , Nitrilos/farmacología , Proteínas Nucleares/genética , Isomerasa de Peptidilprolil/genética , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteína de la Leucemia Promielocítica , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
8.
J Biol Chem ; 285(13): 9485-9492, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20100838

RESUMEN

Promyelocytic leukemia protein (PML) was originally identified as part of a chromosomal translocation that contributes to the development of acute promyelocytic leukemia (APL). Since its discovery, PML has been found to play diverse roles in different cellular processes. Notably, PML has anti-proliferative and pro-apoptotic activity that supports its role as a tumor suppressor. We have previously shown that the peptidyl-prolyl isomerase Pin1 is able to affect cell proliferation and hydrogen peroxide (H(2)O(2))-mediated cell death through modulation of the steady-state levels of PML. We have extended these studies to show that the interaction between PML and Pin1 is targeted by multiple extracellular signals in the cell. We show that H(2)O(2) up-regulates and IGF-1 down-regulates PML expression in a Pin1-dependent manner. Interestingly, we found that H(2)O(2)- and IGF-1-mediated alteration in PML accumulation regulate MDA-MB-231 cell migration. Furthermore, we show that the control of cell migration by PML, and thus H(2)O(2) and IGF-1, results from PML-dependent decreased expression of integrin beta1 (ITGB1). Knockdown of Pin1 leads to decreased cell migration, lower levels of ITGB1 expression and resistance to IGF-1- and H(2)O(2)-induced changes in cell migration and ITGB1 expression. Taken together, our work identifies PML as a common target for H(2)O(2) and IGF-1 and supports a novel tumor suppressive role for PML in controlling cell migration through the expression of ITGB1.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Peróxido de Hidrógeno/química , Factor I del Crecimiento Similar a la Insulina/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Línea Celular Tumoral , Movimiento Celular , Regulación hacia Abajo , Humanos , Integrina beta1/metabolismo , Microscopía Fluorescente/métodos , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil/química , Plásmidos/metabolismo , ARN Interferente Pequeño/metabolismo , Factores de Tiempo , Cicatrización de Heridas
9.
Mol Cell Biol ; 39(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602497

RESUMEN

Estrogen-related receptors (ERRs) have emerged as major metabolic regulators in various tissues. However, their expression and function in the vasculature remains unknown. Here, we report the transcriptional program and cellular function of ERRα in endothelial cells (ECs), a cell type with a multifaceted role in vasculature. Of the three ERR subtypes, ECs exclusively express ERRα. Gene expression profiling of ECs lacking ERRα revealed that ERRα predominantly acts as a transcriptional repressor, targeting genes linked with angiogenesis, cell migration, and cell adhesion. ERRα-deficient ECs exhibit decreased proliferation but increased migration and tube formation. ERRα depletion increased basal as well as vascular endothelial growth factor A (VEGFA)- and ANG1/2-stimulated angiogenic sprouting in endothelial spheroids. Moreover, retinal angiogenesis is enhanced in ERRα knockout mice compared to that in wild-type mice. Surprisingly, ERRα is dispensable for the regulation of its classic targets, such as metabolism, mitochondrial biogenesis, and cellular respiration in the ECs. ERRα is enriched at the promoters of angiogenic, migratory, and cell adhesion genes. Further, VEGFA increased ERRα recruitment to angiogenesis-associated genes and simultaneously decreased their expression. Despite increasing its gene occupancy, proangiogenic stimuli decrease ERRα expression in ECs. Our work shows that endothelial ERRα plays a repressive role in angiogenesis and potentially fine-tunes growth factor-mediated angiogenesis.


Asunto(s)
Células Endoteliales/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Inductores de la Angiogénesis/metabolismo , Animales , Adhesión Celular/genética , Movimiento Celular/genética , Metabolismo Energético/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica/fisiología , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor Relacionado con Estrógeno ERRalfa
10.
J Gerontol A Biol Sci Med Sci ; 73(9): 1167-1177, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29538624

RESUMEN

Metabolic, inflammatory, and functional changes occur in cardiovascular aging which may stem from oxidative stress and be remediable with antioxidants. Glutathione, an intracellular antioxidant, declines with aging, and supplementation with glutathione precursors, N-acetyl cysteine (NAC) and glycine (Gly), increases tissue glutathione. Thirty-month old mice were fed diets supplemented with NAC or NAC+Gly and, after 7 weeks, cardiac function and molecular studies were performed. The NAC+Gly supplementation improved diastolic function, increasing peak early filling velocity, and reducing relaxation time, left atrial volume, and left ventricle end diastolic pressure. By contrast, cardiac function did not improve with NAC alone. Both diet supplementations decreased cardiac levels of inflammatory mediators; only NAC+Gly reduced leukocyte infiltration. Several mitochondrial genes reduced with aging were upregulated in hearts by NAC+Gly diet supplementation. These Krebs cycle and oxidative phosphorylation enzymes, suggesting improved mitochondrial function, and permeabilized cardiac fibers from NAC+Gly-fed mice produced ATP from carbohydrate and fatty acid sources, whereas fibers from control old mice were less able to utilize fatty acids. Our data indicate that NAC+Gly supplementation can improve diastolic function in the old mouse and may have potential to prevent important morbidities for older people.


Asunto(s)
Acetilcisteína/metabolismo , Envejecimiento/fisiología , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Dietoterapia/métodos , Suplementos Dietéticos , Glicina/metabolismo , Animales , Antioxidantes/metabolismo , Senescencia Celular/fisiología , Glutatión/metabolismo , Inflamación/metabolismo , Ratones , Mitocondrias/metabolismo , Estrés Oxidativo
11.
Artículo en Inglés | MEDLINE | ID: mdl-28413576

RESUMEN

In most clinical cases, left ventricular hypertrophy (LVH) occurs over time from persistent cardiac stress. At the molecular level, this results in both transient and long-term changes to metabolic, sarcomeric, ion handling, and stress signaling pathways. Although this is initially an adaptive change, the mechanisms underlying LVH eventually lead to maladaptive changes including fibrosis, decreased cardiac function, and failure. Understanding the regulators of long-term changes, which are largely driven by transcriptional remodeling, is a crucial step in identifying novel therapeutic targets for preventing the downstream negative effects of LVH and treatments that could reverse or prevent it. The development of effective therapeutics, however, will require a critical understanding of what to target, how to modify important pathways, and how to identify the stage of pathology in which a specific treatment should be used.


Asunto(s)
Fármacos Cardiovasculares/administración & dosificación , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Tiempo de Tratamiento , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Progresión de la Enfermedad , Esquema de Medicación , Humanos , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transcripción Genética , Resultado del Tratamiento
12.
Cell Rep ; 6(4): 633-45, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24529706

RESUMEN

Synchrony of the mammalian circadian clock is achieved by complex transcriptional and translational feedback loops centered on the BMAL1:CLOCK heterodimer. Modulation of circadian feedback loops is essential for maintaining rhythmicity, yet the role of transcriptional coactivators in driving BMAL1:CLOCK transcriptional networks is largely unexplored. Here, we show diurnal hepatic steroid receptor coactivator 2 (SRC-2) recruitment to the genome that extensively overlaps with the BMAL1 cistrome during the light phase, targeting genes that enrich for circadian and metabolic processes. Notably, SRC-2 ablation impairs wheel-running behavior, alters circadian gene expression in several peripheral tissues, alters the rhythmicity of the hepatic metabolome, and deregulates the synchronization of cell-autonomous metabolites. We identify SRC-2 as a potent coregulator of BMAL1:CLOCK and find that SRC-2 targets itself with BMAL1:CLOCK in a feedforward loop. Collectively, our data suggest that SRC-2 is a transcriptional coactivator of the BMAL1:CLOCK oscillators and establish SRC-2 as a critical positive regulator of the mammalian circadian clock.


Asunto(s)
Ritmo Circadiano , Metaboloma , Coactivador 2 del Receptor Nuclear/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Hígado/metabolismo , Masculino , Ratones , Coactivador 2 del Receptor Nuclear/genética , Especificidad de Órganos , Transcriptoma
13.
Mol Endocrinol ; 27(2): 366-80, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23315938

RESUMEN

The rapidly growing family of transcriptional coregulators includes coactivators that promote transcription and corepressors that harbor the opposing function. In recent years, coregulators have emerged as important regulators of metabolic homeostasis, including the p160 steroid receptor coactivator (SRC) family. Members of the SRC family have been ascribed important roles in control of gluconeogenesis, fat absorption and storage in the liver, and fatty acid oxidation in skeletal muscle. To provide a deeper and more granular understanding of the metabolic impact of the SRC family members, we performed targeted metabolomic analyses of key metabolic byproducts of glucose, fatty acid, and amino acid metabolism in mice with global knockouts (KOs) of SRC-1, SRC-2, or SRC-3. We measured amino acids, acyl carnitines, and organic acids in five tissues with key metabolic functions (liver, heart, skeletal muscle, brain, plasma) isolated from SRC-1, -2, or -3 KO mice and their wild-type littermates under fed and fasted conditions, thereby unveiling unique metabolic functions of each SRC. Specifically, SRC-1 ablation revealed the most significant impact on hepatic metabolism, whereas SRC-2 appeared to impact cardiac metabolism. Conversely, ablation of SRC-3 primarily affected brain and skeletal muscle metabolism. Surprisingly, we identified very few metabolites that changed universally across the three SRC KO models. The findings of this Research Resource demonstrate that coactivator function has very limited metabolic redundancy even within the homologous SRC family. Furthermore, this work also demonstrates the use of metabolomics as a means for identifying novel metabolic regulatory functions of transcriptional coregulators.


Asunto(s)
Metaboloma , Coactivadores de Receptor Nuclear/metabolismo , Aminoácidos/metabolismo , Animales , Encéfalo/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Coactivador 1 de Receptor Nuclear/deficiencia , Coactivador 1 de Receptor Nuclear/genética , Coactivador 2 del Receptor Nuclear/deficiencia , Coactivador 2 del Receptor Nuclear/genética , Coactivador 3 de Receptor Nuclear/deficiencia , Coactivador 3 de Receptor Nuclear/genética , Coactivadores de Receptor Nuclear/sangre , Coactivadores de Receptor Nuclear/genética , Plasma/metabolismo
14.
PLoS One ; 7(12): e53395, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300926

RESUMEN

A major component of the cardiac stress response is the simultaneous activation of several gene regulatory networks. Interestingly, the transcriptional regulator steroid receptor coactivator-2, SRC-2 is often decreased during cardiac failure in humans. We postulated that SRC-2 suppression plays a mechanistic role in the stress response and that SRC-2 activity is an important regulator of the adult heart gene expression profile. Genome-wide microarray analysis, confirmed with targeted gene expression analyses revealed that genetic ablation of SRC-2 activates the "fetal gene program" in adult mice as manifested by shifts in expression of a) metabolic and b) sarcomeric genes, as well as associated modulating transcription factors. While these gene expression changes were not accompanied by changes in left ventricular weight or cardiac function, imposition of transverse aortic constriction (TAC) predisposed SRC-2 knockout (KO) mice to stress-induced cardiac dysfunction. In addition, SRC-2 KO mice lacked the normal ventricular hypertrophic response as indicated through heart weight, left ventricular wall thickness, and blunted molecular signaling known to activate hypertrophy. Our results indicate that SRC-2 is involved in maintenance of the steady-state adult heart transcriptional profile, with its ablation inducing transcriptional changes that mimic a stressed heart. These results further suggest that SRC-2 deletion interferes with the timing and integration needed to respond efficiently to stress through disruption of metabolic and sarcomeric gene expression and hypertrophic signaling, the three key stress responsive pathways.


Asunto(s)
Hipertrofia Ventricular Izquierda/metabolismo , Coactivador 2 del Receptor Nuclear/genética , Disfunción Ventricular Izquierda/metabolismo , Animales , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/fisiopatología , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular/genética
15.
Cell Metab ; 15(5): 752-63, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22560224

RESUMEN

Oxidation of lipid substrates is essential for survival in fasting and other catabolic conditions, sparing glucose for the brain and other glucose-dependent tissues. Here we show Steroid Receptor Coactivator-3 (SRC-3) plays a central role in long chain fatty acid metabolism by directly regulating carnitine/acyl-carnitine translocase (CACT) gene expression. Genetic deficiency of CACT in humans is accompanied by a constellation of metabolic and toxicity phenotypes including hypoketonemia, hypoglycemia, hyperammonemia, and impaired neurologic, cardiac and skeletal muscle performance, each of which is apparent in mice lacking SRC-3 expression. Consistent with human cases of CACT deficiency, dietary rescue with short chain fatty acids drastically attenuates the clinical hallmarks of the disease in mice devoid of SRC-3. Collectively, our results position SRC-3 as a key regulator of ß-oxidation. Moreover, these findings allow us to consider platform coactivators such as the SRCs as potential contributors to syndromes such as CACT deficiency, previously considered as monogenic.


Asunto(s)
Carnitina Aciltransferasas/genética , Carnitina Aciltransferasas/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Coactivador 3 de Receptor Nuclear/genética , Coactivador 3 de Receptor Nuclear/metabolismo , Animales , Carnitina Aciltransferasas/deficiencia , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Humanos , Hiperamonemia/genética , Hiperamonemia/metabolismo , Hipoglucemia/genética , Hipoglucemia/metabolismo , Cetosis/genética , Cetosis/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Enfermedades Musculares/enzimología , Coactivador 3 de Receptor Nuclear/deficiencia , Oxidación-Reducción
16.
Int J Biol Sci ; 5(4): 366-76, 2009 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-19471587

RESUMEN

The promyelocytic leukemia protein (PML) is involved in many cellular processes including cell cycle progression, DNA damage response, transcriptional regulation, viral infection, and apoptosis. These cellular activities often rely on the localization of PML to unique subnuclear structures known as PML nuclear bodies (NBs). More than 50 cellular proteins are known to traffic in and out of PML NBs, either transiently or constitutively. In order to understand the dynamics of these NBs, it is important to delineate the regulation of PML itself. PML is subject to extensive regulation at transcriptional, post-transcriptional, and post-translational levels. Many of these modes of regulation depend on the cellular context and the presence of extracellular signals. This review focuses on the current knowledge of regulation of PML under normal cellular conditions as well as the role for regulation of PML in viral infection and cancer.


Asunto(s)
Núcleo Celular/metabolismo , Cuerpos de Inclusión Intranucleares/metabolismo , Proteínas Supresoras de Tumor/fisiología , Animales , Humanos , Cuerpos de Inclusión Intranucleares/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Proteína de la Leucemia Promielocítica , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
17.
Cancer Ther ; 7(A): 219-226, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19756257

RESUMEN

Though originally discovered as a tumor suppressor in Acute Promyelocytic Leukemia (APL), the importance of promyelocytic leukemia protein (PML) in cancers of other origins has not been widely studied. Recent studies have shown that multiple types of cancers show decreased expression of PML protein, though the mechanisms leading to this down-regulation are unknown. Decreased expression of PML can result in loss of cell cycle control and prevention of apoptosis and is likely a key event in the promotion of oncogenesis. Many of these effects are due to changes in the transcriptional profile of the cell as a result of decreased size and number of PML nuclear bodies. Several mouse studies confirm the contribution of PML to oncogenesis and cancer progression. It is important to not only further define a role for PML as a tumor suppressor, but also to begin to develop strategies to target PML therapeutically.

18.
Mol Cell Biol ; 28(3): 997-1006, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18039859

RESUMEN

Promyelocytic leukemia protein (PML) is an important regulator due to its role in numerous cellular processes including apoptosis, viral infection, senescence, DNA damage repair, and cell cycle regulation. Despite the role of PML in many cellular functions, little is known about the regulation of PML itself. We show that PML stability is regulated through interaction with the peptidyl-prolyl cis-trans isomerase Pin1. This interaction is mediated through four serine-proline motifs in the C terminus of PML. Binding to Pin1 results in degradation of PML in a phosphorylation-dependent manner. Furthermore, our data indicate that sumoylation of PML blocks the interaction, thus preventing degradation of PML by this pathway. Functionally, we show that in the MDA-MB-231 breast cancer cell line modulating levels of Pin1 affects steady-state levels of PML. Furthermore, degradation of PML due to Pin1 acts both to protect these cells from hydrogen peroxide-induced death and to increase the rate of proliferation. Taken together, our work defines a novel mechanism by which sumoylation of PML prevents Pin1-dependent degradation. This interaction likely occurs in numerous cell lines and may be a pathway for oncogenic transformation.


Asunto(s)
Neoplasias de la Mama/patología , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Neoplasias de la Mama/etiología , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Femenino , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA , Fenotipo , Proteína de la Leucemia Promielocítica , Unión Proteica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
19.
Mol Cell Biol ; 28(18): 5658-67, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18625722

RESUMEN

Promyelocytic leukemia protein (PML) sumoylation has been proposed to control the formation of PML nuclear bodies (NBs) and is crucial for PML-dependent cellular processes, including apoptosis and transcriptional regulation. However, the regulatory mechanisms of PML sumoylation and its specific roles in the formation of PML NBs remain largely unknown. Here, we show that histone deacetylase 7 (HDAC7) knockdown reduces the size and the number of the PML NBs in human umbilical vein endothelial cells (HUVECs). HDAC7 coexpression stimulates PML sumoylation independent of its HDAC activity. Furthermore, HDAC7 associates with the E2 SUMO ligase, Ubc9, and stimulates PML sumoylation in vitro, suggesting that it possesses a SUMO E3 ligase-like activity to promote PML sumoylation. Importantly, HDAC7 knockdown inhibits tumor necrosis factor alpha-induced PML sumoylation and the formation of PML NBs in HUVECs. These results demonstrate a novel function of HDAC7 and provide a regulatory mechanism of PML sumoylation.


Asunto(s)
Histona Desacetilasas/metabolismo , Cuerpos de Inclusión Intranucleares/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células HeLa , Histona Desacetilasas/genética , Humanos , Proteínas Nucleares/genética , Proteína de la Leucemia Promielocítica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Supresoras de Tumor/genética , Venas Umbilicales/citología
20.
J Biol Chem ; 282(25): 18584-18596, 2007 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-17475621

RESUMEN

The aberrant association of promyelocytic leukemia protein-retinoic acid receptor-alpha (PML-RARalpha) with corepressor complexes is generally thought to contribute to the ability of PML-RARalpha to regulate transcription. We report here that PML-RARalpha acquires aberrant association with coactivators. We show that endogenous PML-RARalpha interacts with the histone acetyltransferases CBP, p300, and SRC-1 in a hormoneindependent manner, an association not seen for RARalpha. This hormone-independent coactivator binding activity requires an intact ligand-binding domain and the NR box of the coactivators. Confocal microscopy studies demonstrate that exogenous PML-RARalpha sequesters and colocalizes with coactivators. These observations correlate with the ability of PML-RARalpha to attenuate the transcription activation of the Notch signaling downstream effector, CBF1, and of the glucocorticoid receptor. This includes attenuation of the glucocorticoid-induced leucine zipper (GILZ) and FLJ25390 target genes of the endogenous glucocorticoid receptor. Furthermore, treatment of NB4 cells with all-trans-retinoic acid, which promotes PML-RARalpha degradation, resulted in increased activation of GILZ. On the basis of these findings, we propose a model in which the hormone-independent association between PML-RARalpha and coactivators contributes to its ability to regulate gene expression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Ácido Retinoico/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular , Glutatión Transferasa/metabolismo , Células HL-60 , Humanos , Microscopía Fluorescente , Modelos Biológicos , Plásmidos/metabolismo , Proteína de la Leucemia Promielocítica , Unión Proteica , Estructura Terciaria de Proteína , Receptores Notch/metabolismo , Receptor alfa de Ácido Retinoico , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA