Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Chem Rev ; 117(3): 1796-1825, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28094515

RESUMEN

Climate change, global warming, urban air pollution, energy supply uncertainty and depletion, and rising costs of conventional energy sources are, among others, potential socioeconomic threats that our community faces today. Transportation is one of the primary sectors contributing to oil consumption and global warming, and natural gas (NG) is considered to be a relatively clean transportation fuel that can significantly improve local air quality, reduce greenhouse-gas emissions, and decrease the energy dependency on oil sources. Internal combustion engines (ignited or compression) require only slight modifications for use with natural gas; rather, the main problem is the relatively short driving distance of natural-gas-powered vehicles due to the lack of an appropriate storage method for the gas, which has a low energy density. The U.S. Department of Energy (DOE) has set some targets for NG storage capacity to obtain a reasonable driving range in automotive applications, ruling out the option of storing methane at cryogenic temperatures. In recent years, both academia and industry have foreseen the storage of natural gas by adsorption (ANG) in porous materials, at relatively low pressures and ambient temperatures, as a solution to this difficult problem. This review presents recent developments in the search for novel porous materials with high methane storage capacities. Within this scenario, both carbon-based materials and metal-organic frameworks are considered to be the most promising materials for natural gas storage, as they exhibit properties such as large surface areas and micropore volumes, that favor a high adsorption capacity for natural gas. Recent advancements, technological issues, advantages, and drawbacks involved in natural gas storage in these two classes of materials are also summarized. Further, an overview of the recent developments and technical challenges in storing natural gas as hydrates in wetted porous carbon materials is also included. Finally, an analysis of design factors and technical issues that need to be considered before adapting vehicles to ANG technology is also presented.

2.
Langmuir ; 33(43): 11857-11861, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-28957632

RESUMEN

KOH activation of a mesophase pitch produces very efficient carbons for the removal of sulfide in aqueous solution, increasing the sulfur oxidation rate with the degree of activation of the carbon. These carbons are characterized by their graphitic structures, with domains of sizes of around 20 nm, and a moderate concentration of surface oxygen groups (0.2-0.5 mmol·g-1) dominating the basic groups. Because the activation leads first to a strong development of the micropores and later to a development of the mesopores, the surface area values are always high, reaching values of as high as 3250 m2·g-1 in the most activated carbon, with a volume of mesopores of as high as 44% of the total pore volume. In the presence of this carbon, the sulfide oxidation rate is 100 times higher than that found for a commercial activated carbon, the results indicating that the porosity of the carbon, especially mesoporosity, plays a role more important than the structure or the chemical nature of the carbon in the kinetics of sulfide oxidation to different polysulfides.

3.
Chemistry ; 22(29): 10028-35, 2016 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-27273454

RESUMEN

The molecular exchange of CH4 for CO2 in gas hydrates grown in confined nanospace has been evaluated for the first time using activated carbons as a host structure. The nano-confinement effects taking place inside the carbon cavities and the exceptional physicochemical properties of the carbon structure allows us to accelerate the formation and decomposition process of the gas hydrates from the conventional timescale of hours/days in artificial bulk systems to minutes in confined nanospace. The CH4 /CO2 exchange process is fully reversible with high efficiency at practical temperature and pressure conditions. Furthermore, these activated carbons can be envisaged as promising materials for long-distance natural gas and CO2 transportation because of the combination of a high storage capacity, a high reversibility, and most important, with extremely fast kinetics for gas hydrate formation and release.

4.
Chemphyschem ; 16(18): 3984-91, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26394883

RESUMEN

Repeated and controlled immersion calorimetry experiments were performed to determine the specific surface area and pore-size distribution (PSD) of a well-characterized, microporous poly(furfuryl alcohol)-based activated carbon. The PSD derived from nitrogen gas adsorption indicated a narrow distribution centered at 0.57±0.05 nm. Immersion into liquids of increasing molecular sizes ranging from 0.33 nm (dichloromethane) to 0.70 nm (α-pinene) showed a decreasing enthalpy of immersion at a critical probe size (0.43-0.48 nm), followed by an increase at 0.48-0.56 nm, and a second decrease at 0.56-0.60 nm. This maximum has not been reported previously. After consideration of possible reasons for this new observation, it is concluded that the effect arises from molecular packing inside the micropores, interpreted in terms of 2D packing. The immersion enthalpy PSD was consistent with that from quenched solid density functional theory (QSDFT) analysis of the nitrogen adsorption isotherm.

5.
Langmuir ; 30(20): 5840-8, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24784997

RESUMEN

In this work, batch and dynamic adsorption tests are coupled for an accurate evaluation of CO2 adsorption performance of three different activated carbons (AC) obtained from olive stones by chemical activation followed by physical activation with CO2 at varying times (i.e., 20, 40, and 60 h). Kinetic and thermodynamic CO2 adsorption tests from simulated flue gas at different temperatures and CO2 pressures are carried out under both batch (a manometric equipment operating with pure CO2) and dynamic (a lab-scale fixed-bed column operating with a CO2/N2 mixture) conditions. The textural characterization of the AC samples shows a direct dependence of both micropore and ultramicropore volume on the activation time; hence, AC60 has the higher contribution. The adsorption tests conducted at 273 and 293 K showed that when CO2 pressure is lower than 0.3 bar, the lower the activation time, the higher CO2 adsorption capacity; a ranking of ω(eq)(AC20) > ω(eq)(AC40) > ω(eq)(AC60) can be exactly defined when T = 293 K. This result is likely ascribed to the narrower pore size distribution of the AC20 sample, whose smaller pores are more effective for CO2 capture at higher temperature and lower CO2 pressure, the latter representing operating conditions of major interest for decarbonation of flue gas effluent. Moreover, the experimental results obtained from dynamic tests confirm the results derived from the batch tests in terms of CO2 adsorption capacity. It is important to highlight the fact that the adsorption of N2 on the synthesized AC samples can be considered to be negligible. Finally, the importance of proper analysis for data characterization and adsorption experimental results is highlighted for the correct assessment of the CO2 removal performance of activated carbons at different CO2 pressures and operating temperatures.

6.
Langmuir ; 29(25): 8133-9, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23701426

RESUMEN

Porous carbon and carbide materials with different structures were characterized using adsorption of nitrogen at 77.4 K before and after preadsorption of n-nonane. The selective blocking of the microporosity with n-nonane shows that ordered mesoporous silicon carbide material (OM-SiC) is almost exclusively mesoporous whereas the ordered mesoporous carbon CMK-3 contains a significant amount of micropores (~25%). The insertion of micropores into OM-SiC using selective extraction of silicon by hot chlorine gas leads to the formation of ordered mesoporous carbide-derived carbon (OM-CDC) with a hierarchical pore structure and significantly higher micropore volume as compared to CMK-3, whereas a CDC material from a nonporous precursor is exclusively microporous. Volumes of narrow micropores, calculated by adsorption of carbon dioxide at 273 K, are in linear correlation with the volumes blocked by n-nonane. Argon adsorption measurements at 87.3 K allow for precise and reliable calculation of the pore size distribution of the materials using density functional theory (DFT) methods.

7.
Langmuir ; 29(9): 3045-53, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23402596

RESUMEN

MCM-41-type mesoporous silica was used as a support for poly(furfuryl alcohol) deposition. This material was produced by precipitation-polycondensation of furfuryl alcohol (FA) in aqueous slurry of the SiO2 support followed by controlled partial carbonization. By tuning the FA/MCM-41 mass ratio in the reaction mixture, various amounts of polymer particles were introduced on the inner and outer surface of the MCM support. The thermal decomposition of the PFA/MCM-41 composites was studied by thermogravimetry (TG) and spectroscopic techniques (DRIFT, XPS), whereas the evolution of textural parameters with increasing polymer content was investigated using low-temperature adsorption of nitrogen. The mechanism of thermal transformations of PFA deposited on the MCM-41 surface was discussed in detail. It was found that heating at a temperature of about 523 K resulted in opening of the furan rings and the formation of γ-diketone moieties, which were found to be the highest effective surface species for the adsorption of polar volatile organic compounds. A further increase in calcination temperature caused a drop in the amounts of surface carbonyls and the appearance of condensed aromatic domains.

8.
Nanotechnology ; 24(3): 035401, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23263466

RESUMEN

Molecular simulations were performed to study the separation of CH(4) and N(2) from mixtures of composition x(CH(4))/x(N(2)) = 5/95 and x(CH(4))/x(N(2)) = 10/90 at 50 bar and 298 K on prototype carbon materials with different pore structures. The studied carbon structures include a slit and a tubular pore, that represent the simplest form of activated carbon and carbon nanotubes, respectively, in addition to a realistic porous carbon model with disordered pore structure and a recently introduced carbon foam model, which has a three-dimensional pore structure. The results indicate that, depending on the pressure and composition, the pore structure influences both the CH(4)/N(2) selectivity and the adsorption behaviour of the fluid molecules. The selectivity was decided by the interactions between CH(4) and N(2) molecules within the pore structure, in addition to the solid-fluid interactions. The simulation results indicate that, at least for the case of activated carbons (slit and random pores), it would not be appropriate to predict the binary adsorption behaviour of methane and nitrogen by means of pure component information. Regardless of the pore structure, the simulation results indicate that carbon materials show a CH(4)/N(2) (thermodynamic) selectivity of only 2-3 up to 2 bar at 298 K, and above this pressure, at equilibrium, none of the carbon materials is adequate for the efficient separation of this mixture.

9.
Phys Chem Chem Phys ; 15(40): 17374-82, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24022609

RESUMEN

We have measured experimental adsorption isotherms of water in zeolite LTA4A, and studied the regeneration process by performing subsequent adsorption cycles after degassing at different temperatures. We observed incomplete desorption at low temperatures, and cation rearrangement at successive adsorption cycles. We also developed a new molecular simulation force field able to reproduce experimental adsorption isotherms in the range of temperatures between 273 K and 374 K. Small deviations observed at high pressures are attributed to the change in the water dipole moment at high loadings. The force field correctly describes the preferential adsorption sites of water at different pressures. We tested the influence of the zeolite structure, framework flexibility, and cation mobility when considering adsorption and diffusion of water. Finally, we performed checks on force field transferability between different hydrophilic zeolite types, concluding that classical, non-polarizable water force fields are not transferable.

10.
Eur J Pediatr Surg ; 33(1): 61-67, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36257335

RESUMEN

INTRODUCTION: The addition of ultrasound-guided percutaneous cryoanalgesia (PCr) for pain management after pectus excavatum (PE) surgery offers a new and advantageous approach. Our aim is to describe our experience with PCr applied on the same day, 24 hours, and 48 hours prior to PE surgery. MATERIAL AND METHODS: Prospective pilot study in patients undergoing ultrasound-guided PCr (2019-2022) was divided into three groups: PCr on the same day of surgery (PCrSD), PCr 24 hours before (PCr24), and PCr 48 hours before (PCr48). We describe the application of technique and data obtained by comparing the three groups. RESULTS: We present 42 patients (25 PCrSD, 11 PCr24, 6 PCr48). PCr24 had a shorter procedure duration than PCrSD (65.8 vs. 91.2 minute; p = 0.048). Related to analgesia, PCr24 and PCr48 showed lower opioid consumption than PCrSD in PCA volume (48.5 and 49.6 vs. 75.1 mL; p = 0.015) and PCA time (23.3 and 23.8 vs. 34.3 hours; p = 0.01). Degree of pain (VAS scale) on the day of surgery and on the second postoperative day was lower in PCr24 and PCr48 than in PCrSD (4 and 2 vs. 5; p = 0.012; 0 and 1 vs. 2; p = 0.01, respectively) as well as shorter hospital stay (3 and 3.5 vs. 5 days; p = 0.021). In addition, PCr24 showed lower opioid consumption and hospital stay than PCr48 (p > 0.05). The greatest savings in hospital costs were obtained in the PCr24 group. CONCLUSION: PCr48 and PCr24 prior to PE surgery offers lower opioid consumption, less pain and shorter hospital stay than PCrSD. PCr24 is comparable to PCr48, but seems to show advantages and simpler logistics for the patient and the hospital.


Asunto(s)
Analgésicos Opioides , Tórax en Embudo , Humanos , Analgésicos Opioides/uso terapéutico , Estudios Prospectivos , Tórax en Embudo/complicaciones , Tórax en Embudo/cirugía , Proyectos Piloto , Dolor Postoperatorio/etiología , Dolor Postoperatorio/terapia , Ultrasonografía Intervencional , Estudios Retrospectivos
11.
Langmuir ; 28(19): 7564-71, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22509799

RESUMEN

Transitional metals (M) were dispersed on single-wall carbon nanohorns (M/SWCNHs, M = Fe, Co, Ni, Cu) by simple thermal treatment of the deposited metal nitrate without H(2) reduction. Nanometallic Ni particles on SWCNH were evidenced by high-resolution transmission electron microscopic observation and X-ray photoelectron spectroscopy. The nano-Ni dispersed on SWCNH showed the highest CH(4) decomposition activity; the activity of used transitional metals decreases in the order Ni ≫ Co > Fe ≫ Cu. On the other hand, the reaction rate over Ni/SWCNH was much larger than that over Ni/Al(2)O(3), and the former provided CO(x)-free H(2) and cup-stacked carbon nanotubes, while Ni/Al(2)O(3) produced CO(x) in addition to H(2). SWCNH was superior to Al(2)O(3) as the catalyst support of Ni for the CH(4) decomposition reaction.

12.
Transl Vis Sci Technol ; 11(9): 1, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048013

RESUMEN

Purpose: The purpose of this study was to improve the biomechanical properties of the cornea through the incorporation of carbon nanostructures. Methods: Healthy Japanese rabbits were used to evaluate the effect of carbon nanostructures' incorporation in the cornea. Rabbits were divided in two groups A and B. In each of these groups, the corneas were divided in (i) corneas not submitted to any treatment (the control group), (ii) corneas modified either with carbon nanostructures (group A), or with the traditional cross-linking technology (group B). After modification, rabbits were euthanized at different time intervals. The biomechanical properties of the treated corneas were evaluated using the inflation method. Results: Biomechanical tests based on the inflation method show that the incorporation of carbon nanostructures to the cornea and their proper distribution within it gives rise to a large improvement in the mechanical properties and tangential elastic modulus (up to 155%). These results anticipate that this novel and easy approach based on nanotechnology is able to compete with the actual cross-linking technology applied in clinical ophthalmology using a photosensitive molecule, such as riboflavin and unpleasant UV-A radiation. Conclusions: The incorporation of carbon nanostructures (single-walled carbon nanotubes and graphene) in corneal stroma is proposed as a promising alternative to improve the mechanical properties in the treated eyes. The proper dispersion of the carbon nanostructures a few days after implementation (down to 60 micrometers depth) explains the successful results achieved. Translational Relevance: Nanotechnology applied to the eye constitutes a promising approach for ocular tissue reinforcement.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Animales , Fenómenos Biomecánicos , Reactivos de Enlaces Cruzados , Fármacos Fotosensibilizantes/uso terapéutico , Conejos
13.
J Am Chem Soc ; 133(8): 2437-43, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21299204

RESUMEN

Pulsed field gradient NMR is applied for monitoring the diffusion properties of guest molecules in hierarchical pore systems after pressure variation in the external atmosphere. Following previous studies with purely mesoporous solids, also in the material containing both micro- and mesopores (activated carbon MA2), the diffusivity of the guest molecules (cyclohexane) is found to be most decisively determined by the sample "history": at a given external pressure, diffusivities are always found to be larger if they are measured after pressure decrease (i.e., on the "desorption" branch) rather than after pressure increase (adsorption branch). Simple model consideration reproduces the order of magnitude of the measured diffusivities as well as the tendencies in their relation to each other and their concentration dependence.

14.
J Am Chem Soc ; 133(7): 2022-4, 2011 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-21280572

RESUMEN

Vibrational-rotational properties of CH(4) adsorbed on the nanopores of single-wall carbon nanohorns (SWCNHs) at 105-140 K were investigated using IR spectroscopy. The difference vibrational-rotational bands of the ν(3) and ν(4) modes below 130 K show suppression of the P and R branches, while the Q branches remain. The widths of the Q branches are much narrower than in the bulk gas phase due to suppression of the Doppler effect. These results indicate that the rotation of CH(4) confined in the nanospaces of SWCNHs is highly restricted, resulting in a rigid assembly structure, which is an anomaly in contrast to that in the bulk liquid phase.

15.
Langmuir ; 27(7): 3618-25, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21344926

RESUMEN

Different types of titanosilicates are synthesized, structurally characterized, and subsequently catalytically tested in the liquid-phase epoxidation of cyclohexene. The performance of three types of combined zeolitic/mesoporous materials is compared with that of widely studied Ti-grafted-MCM-41 molecular sieve and the TS-1 microporous titanosilicate. The catalytic test results are correlated with the structural characteristics of the different catalysts. Moreover, for the first time, immersion calorimetry with the same substrate molecule as in the catalytic test reaction is applied as an extra means to interpret the catalytic results. A good correlation between catalytic performance and immersion calorimetry results is found. This work points out that the combination of catalytic testing and immersion calorimetry can lead to important insights into the influence of the materials structural characteristics on catalysis. Moreover, the potential of using immersion calorimetry as a screening tool for catalysts in epoxidation reactions is shown.

16.
Environ Sci Technol ; 45(24): 10605-10, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22049916

RESUMEN

The effect of surface chemistry (nature and amount of oxygen groups) in the removal of ammonia was studied using a modified resin-based activated carbon. NH(3) breakthrough column experiments show that the modification of the original activated carbon with nitric acid, that is, the incorporation of oxygen surface groups, highly improves the adsorption behavior at room temperature. Apparently, there is a linear relationship between the total adsorption capacity and the amount of the more acidic and less stable oxygen surface groups. Similar experiments using moist air clearly show that the effect of humidity highly depends on the surface chemistry of the carbon used. Moisture highly improves the adsorption behavior for samples with a low concentration of oxygen functionalities, probably due to the preferential adsorption of ammonia via dissolution into water. On the contrary, moisture exhibits a small effect on samples with a rich surface chemistry due to the preferential adsorption pathway via Brønsted and Lewis acid centers from the carbon surface. FTIR analyses of the exhausted oxidized samples confirm both the formation of NH(4)(+) species interacting with the Brønsted acid sites, together with the presence of NH(3) species coordinated, through the lone pair electron, to Lewis acid sites on the graphene layers.


Asunto(s)
Contaminantes Atmosféricos/química , Amoníaco/química , Carbón Orgánico/química , Adsorción , Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Amoníaco/análisis , Carbón Orgánico/análisis , Modelos Químicos , Propiedades de Superficie
17.
Chemphyschem ; 11(12): 2555-60, 2010 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-20677316

RESUMEN

Different site energy distribution functions based on the condensation approximation method are proposed for the liquid-phase or gas-phase adsorption equilibrium data following the Fritz-Schlüender isotherm. Energy distribution functions for the four limiting cases of the Fritz-Schlüender isotherm are also discussed. The proposed models are successfully applied to the experimental equilibrium data of nitrogen molecules at 77 K on a pitch-based activated carbon (PA) and a pitch-based activated carbon containing boron (PBA). An energy distribution function based on FS isotherm containing five parameters suggest a unimodal distribution of binding sites for carbon PA, the binding site energies being distributed as exponential or unimodal, depending on the pressure, in the case of carbon PBA. The advantages of the proposed models are discussed.

18.
Front Chem ; 8: 581133, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330370

RESUMEN

Physical adsorption on activated carbons has shown to be a very attractive methodology for CO2 separation from flue gas streams and biogas. In this context, the goal of this work was to prepare granular activated carbons intended for CO2 adsorption from an abundant and low-cost biomass residue (coconut shell) by using practical and cost-effective procedures. By the first time, parameters involved in chemical activation with dehydrating agents (H3PO4 or ZnCl2) and/or physical activation with CO2 were systematically screened in depth in order to obtain materials with improved performance for CO2 adsorption on a volume basis. Compared with the commonly used mass basis, the data expressed on a volume basis are very important for industrial applications because they permit to estimate the efficiency of a fixed bed adsorption column. The work permitted to prepare granular activated carbons with a blend of relatively high gravimetric CO2 uptake and bulk density, so that high volumetric CO2 uptakes were attained. The highest values were 2.67 and 1.17 mmol/cm3 for CO2 pressures of 1.0 and 0.15 bar, respectively. It is remarkable that the obtained results were similar to those reported by other authors for carbons chemically activated with KOH, the activation methodology that has been widely claimed as the one that produce ACs with the best performances for CO2 adsorption, but which involves severe restrictions. Therefore, the present work can be considered a very important step in paving the way toward making CO2 adsorption an each time more interesting technology to reduce the emissions of anthropogenic greenhouse gases.

19.
Materials (Basel) ; 12(12)2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226832

RESUMEN

Although traditionally high-surface area carbon materials have been considered as rigid structures with a disordered three dimensional (3D) network of graphite microdomains associated with a limited electrical conductivity (highly depending on the porous structure and surface chemistry), here we show for the first time that this is not the case for activated carbon materials prepared using harsh activation conditions (e.g., KOH activation). In these specific samples a clear structural re-orientation can be observed upon adsorption of different organic molecules, the structural changes giving rise to important changes in the electrical resistivity of the material. Whereas short chain hydrocarbons and their derivatives give rise to an increased resistivity, the contrary occurs for longer-chain hydrocarbons and/or alcohols. The high sensitivity of these high-surface area carbon materials towards these organic molecules opens the gate towards their application for sensing devices.

20.
Nanomedicine (Lond) ; 13(17): 2171-2185, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30277422

RESUMEN

AIM: Sol-gel is a suitable and advantageous method to synthesize mixed oxide nanomaterials with unique physicochemical and biological properties. MATERIALS & METHODS: In this work, TiO2-SiO2 nanopowders cogeled with platinum acetylacetonate were developed and studied in the perspective of nanomedicine. The physicochemical properties of the Pt/TiO2-SiO2 nanopowders, named NanoRa2-Pt, were evaluated in detail by means of complementary spectroscopic and microscopic tools. The nanopowder's biocatalytic efficiency in wound healing was evaluated in a Type I diabetes animal model. RESULTS: These are TiO2-SiO2 submicron mesoporous particles with variable size and shape containing ultra-small platinum nanoparticles with catalytic properties. CONCLUSION: The use of NanoRa2-Pt catalyzes the natural healing processes with a faster remodeling stage. These sols, which we call nanobiocatalysts, belong to an emerging and very promising research field known as catalytic nanomedicine.


Asunto(s)
Nanopartículas/química , Platino (Metal)/química , Dióxido de Silicio/química , Titanio/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Catálisis , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/fisiopatología , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Humanos , Masculino , Nanopartículas del Metal/química , Nanomedicina , Porosidad , Ratas , Ratas Wistar , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA