Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Virol ; 98(6): e0051324, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38752754

RESUMEN

Marseilleviruses (MsV) are a group of viruses that compose the Marseilleviridae family within the Nucleocytoviricota phylum. They have been found in different samples, mainly in freshwater. MsV are classically organized into five phylogenetic lineages (A/B/C/D/E), but the current taxonomy does not fully represent all the diversity of the MsV lineages. Here, we describe a novel strain isolated from a Brazilian saltwater sample named Marseillevirus cajuinensis. Based on genomics and phylogenetic analyses, M. cajuinensis exhibits a 380,653-bp genome that encodes 515 open reading frames. Additionally, M. cajuinensis encodes a transfer RNA, a feature that is rarely described for Marseilleviridae. Phylogeny suggests that M. cajuinensis forms a divergent branch within the MsV lineage A. Furthermore, our analysis suggests that the common ancestor for the five classical lineages of MsV diversified into three major groups. The organization of MsV into three main groups is reinforced by a comprehensive analysis of clusters of orthologous groups, sequence identities, and evolutionary distances considering several MsV isolates. Taken together, our results highlight the importance of discovering new viruses to expand the knowledge about known viruses that belong to the same lineages or families. This work proposes a new perspective on the Marseilleviridae lineages organization that could be helpful to a future update in the taxonomy of the Marseilleviridae family. IMPORTANCE: Marseilleviridae is a family of viruses whose members were mostly isolated from freshwater samples. In this work, we describe the first Marseillevirus isolated from saltwater samples, which we called Marseillevirus cajuinensis. Most of M. cajuinensis genomic features are comparable to other Marseilleviridae members, such as its high number of unknown proteins. On the other hand, M. cajuinensis encodes a transfer RNA, which is a gene category involved in protein translation that is rarely described in this viral family. Additionally, our phylogenetic analyses suggested the existence of, at least, three major Marseilleviridae groups. These observations provide a new perspective on Marseilleviridae lineages organization, which will be valuable in future updates to the taxonomy of the family since the current official classification does not capture all the Marseilleviridae known diversity.


Asunto(s)
Genoma Viral , Virus , Brasil , Evolución Molecular , Genómica/métodos , Sistemas de Lectura Abierta , Filogenia , ARN Viral/genética , Virus/clasificación , Virus/genética
2.
Virol J ; 21(1): 135, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858684

RESUMEN

The discovery of mimivirus in 2003 prompted the search for novel giant viruses worldwide. Despite increasing interest, the diversity and distribution of giant viruses is barely known. Here, we present data from a 2012-2022 study aimed at prospecting for amoebal viruses in water, soil, mud, and sewage samples across Brazilian biomes, using Acanthamoeba castellanii for isolation. A total of 881 aliquots from 187 samples covering terrestrial and marine Brazilian biomes were processed. Electron microscopy and PCR were used to identify the obtained isolates. Sixty-seven amoebal viruses were isolated, including mimiviruses, marseilleviruses, pandoraviruses, cedratviruses, and yaraviruses. Viruses were isolated from all tested sample types and almost all biomes. In comparison to other similar studies, our work isolated a substantial number of Marseillevirus and cedratvirus representatives. Taken together, our results used a combination of isolation techniques with microscopy, PCR, and sequencing and put highlight on richness of giant virus present in different terrestrial and marine Brazilian biomes.


Asunto(s)
Virus Gigantes , Brasil , Virus Gigantes/aislamiento & purificación , Virus Gigantes/genética , Virus Gigantes/clasificación , Virus Gigantes/ultraestructura , Filogenia , Reacción en Cadena de la Polimerasa , Acanthamoeba castellanii/virología , Acanthamoeba castellanii/aislamiento & purificación , Microbiología del Suelo , Aguas del Alcantarillado/virología , Análisis de Secuencia de ADN , Agua de Mar/virología , Microbiología del Agua
3.
J Virol ; 96(3): e0173221, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34787452

RESUMEN

The chikungunya virus has spread globally with a remarkably high attack rate. Infection causes arthralgic sequelae that can last for years. Nevertheless, there are no specific drugs or vaccines to contain the virus. Understanding the biology of the virus, such as its replication cycle, is a powerful tool to identify new drugs and comprehend virus-host interactions. Even though the chikungunya virus has been known for a long time (it was first described in 1952), many aspects of the replication cycle remain unclear. Furthermore, part of the cycle is based on observations of other alphaviruses. In this study, we used electron and scanning microscopy, as well as biological assays, to analyze and investigate the stages of the chikungunya virus replication cycle. Based on our data, we found infection cellular activities other than those usually described for the chikungunya virus replication cycle, i.e., we show particles enveloping intracellularly without budding in a membrane-delimited morphogenesis area, and we also observed virion release by membrane protrusions. Our work provides novel details regarding the biology of chikungunya virus and fills gaps in our knowledge of its replication cycle. These findings may contribute to a better understanding of virus-host interactions and support the development of antivirals. IMPORTANCE The understanding of virus biology is essential to containing virus dissemination, and exploring the virus replication cycle is a powerful tool to do this. There are many points in the biology of the chikungunya virus that need to be clarified, especially regarding its replication cycle. Our incomplete understanding of chikungunya virus infection stages is based on studies with other alphaviruses. We systematized the chikungunya virus replication cycle using microscopic imaging in the order of infection stages, as follows: entry, replication, protein synthesis, assembly/morphogenesis, and release. The imaging evidence shows novel points in the replication cycle of enveloping without budding, as well as particle release by cell membrane protrusion.


Asunto(s)
Fiebre Chikungunya/virología , Virus Chikungunya/fisiología , Virus Chikungunya/ultraestructura , Fenómenos Fisiológicos de los Virus , Replicación Viral , Animales , Células Cultivadas , Chlorocebus aethiops , Efecto Citopatogénico Viral , Vacuolas/ultraestructura , Células Vero , Liberación del Virus
4.
J Gen Virol ; 102(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34342561

RESUMEN

Dengue virus (DENV) is the most prevalent pathogen of the Flaviviridae family. Due to the considerable increase in DENV incidence and spread, symptoms such as CNS involvement have increased. Heparan sulphate (HS) was the first molecule identified as an adhesion factor for DENV in mammalian cells. Viral phenotypes with different HS interactions are associated with various clinical symptoms, including neurological alterations. Here, using in silico analyses, in vitro studies, and the in vivo mouse model, we characterized two natural circulating DENV3 genotype I (GI) lineage 1 (L1) in Brazil-DENV3 MG-20 (from Minas Gerais) and DENV3 PV_BR (from Rondônia) that present divergent neurovirulent profiles and sensitivity to sulphated molecules. We identified substitutions at the viral envelope (E) in positions 62 and 123 as likely responsible for the differences in neurovirulence. The E62K and E123Q substitutions in DENV3 MG-20 and DENV3 PV_BR, respectively, greatly influenced in silico electrostatic density and heparin docking results. In vivo, mice inoculated with DENV3 MG-20 died, but not those infected with DENV3 PV_BR. The clinical symptoms, such as paralysis of the lower limbs and meningoencephalitis, and histopathology, also differed between the inoculated groups. In vitro heparin and heparinases assays further demonstrated the biological impact of these substitutions. Other characteristics that have been previously associated with alterations in cell tropism and neurovirulence, such as changes in the size of lysis plaques and differences in cytopathic effects in glioblastoma cells, were also observed.


Asunto(s)
Virus del Dengue/clasificación , Virus del Dengue/genética , Dengue/virología , Genotipo , Heparitina Sulfato/metabolismo , Proteínas del Envoltorio Viral/química , Animales , Sitios de Unión , Encéfalo/patología , Comunicación Celular , Línea Celular , Dengue/patología , Virus del Dengue/fisiología , Modelos Animales de Enfermedad , Femenino , Heparina , Interacciones Huésped-Patógeno/fisiología , Humanos , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Fenotipo , Filogenia , Conformación Proteica , Proteínas del Envoltorio Viral/clasificación , Proteínas del Envoltorio Viral/genética , Virulencia , Acoplamiento Viral
5.
Virol J ; 18(1): 180, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-34482844

RESUMEN

BACKGROUND: Covid-19 has the respiratory tract as the main target of infection, and patients present mainly dyspnea, pneumonia, dry cough, and fever. Nevertheless, organs outside the respiratory tract had been reported in recent studies, including the gastrointestinal tract and liver. The host innate immune system recognizes pathogen-associated molecular patterns (PAMPs) through their pattern recognition receptor (PRRs). Toll-like receptor 7 (TLR-7) is a pattern recognition receptor recognizing ssRNA (SARS-CoV-2 is an ssRNA). Polymorphisms are characterized by two or more alternative forms of a distinct phenotype in the same population. Polymorphisms in tlrs genes can negatively influence the immune response to infectious diseases. There are several references in the literature to non-synonymous single nucleotide (rs) polymorphisms related to several genes. Some of them are important for the innate immunity, as rs 179008 (tlr-7), rs3775291 (tlr3), rs8177374 (tir domain-containing adaptor protein, tirap), rs1024611 (monocyte chemoattractant protein-1, mcp-1) and rs61942233 (2'-5'-oligoadenylate synthase-3, oas-3). CASE PRESENTATION: We identified a 5-year-old-male child with gastrointestinal symptoms and fever presenting acholic stool and jaundice, who was positive for SARS-CoV-2 IgM, IgA, and IgG and presenting the Gln11Leu rs 179008 in tlr-7. The child presented high levels of aspartate aminotransferase, alanine aminotransferase, bilirubin, C-reactive protein, D-dimer, gamma-glutamyl transferase, alkaline phosphatase, and was negative for serological tests for hepatitis A, B, C, E, HIV 1 and 2, herpes virus, cytomegalovirus, Epstein-Barr virus, and negative for RTqPCR for Influenza A and B, RSV and SARS-CoV-2. We also investigated other SNPs in the tlr-3 (rs3775291), tirap (rs8177374), mcp-1 (rs1024611), and oas-3 (rs61942233) genes, and no mutation was detected. After an interview with the child's caregivers, any possible accidental ingestion of drugs or hepatotoxic substances was ruled out. CONCLUSION: To our knowledge, this is the first report of a SARS-CoV-2 caused hepatitis in a male child that has the tlr-7 Gln11Leu rs 179008, which could impair an efficient initial immune response. The knowledge of the patient's immune deficiency could improve the treatment to correct this deficiency with specific medications.


Asunto(s)
COVID-19/genética , COVID-19/virología , Hepatitis Viral Humana/genética , Hepatitis Viral Humana/virología , Receptor Toll-Like 7/genética , Anticuerpos Antivirales/sangre , COVID-19/inmunología , Preescolar , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/virología , Heces/virología , Hepatitis Viral Humana/inmunología , Herpesvirus Humano 4/aislamiento & purificación , Humanos , Inmunidad Innata , Gripe Humana , Masculino , Polimorfismo de Nucleótido Simple , SARS-CoV-2/aislamiento & purificación
6.
Arch Virol ; 166(5): 1433-1438, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33683474

RESUMEN

The recent introduction of Zika virus (ZIKV), the recurrence of dengue virus (DENV), and the lethality of yellow fever virus (YFV) have had a significant impact on Brazilian society and public health. Here, we targeted two cellular kinases implicated in cell proliferation and cancer that are also important for viral replication: mitogen-activated protein kinase kinase (MEK) and Src. We used two MEK inhibitors - trametinib and selumetinib - and two Src inhibitors - saracatinib and bosutinib - to inhibit ZIKV, DENV, and YFV replication in cell culture. The cytotoxicity of the four inhibitors was determined by the observation of abnormal morphology and quantification of adherent cells by crystal violet staining. The antiviral activity of these drugs was assessed based on the reduction of plaque-forming units in cell culture as evidence of the inhibition of the replication of the selected flaviviruses. All four inhibitors showed antiviral activity, but among them, trametinib was the safest and most efficacious against all of the viruses, inhibiting the replication of ZIKV and YFV by 1000-fold, and DENV2/3 by nearly 100-fold. This pan-antiviral effect shows that trametinib could be repurposed for the treatment of flaviviral infections.


Asunto(s)
Antivirales/farmacología , Flavivirus/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cricetinae , Flavivirus/clasificación , Flavivirus/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Células Vero , Replicación Viral/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores
7.
Virol J ; 17(1): 13, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005257

RESUMEN

BACKGROUND: Viruses are the most numerous entities on Earth and have also been central to many episodes in the history of humankind. As the study of viruses progresses further and further, there are several limitations in transferring this knowledge to undergraduate and high school students. This deficiency is due to the difficulty in designing hands-on lessons that allow students to better absorb content, given limited financial resources and facilities, as well as the difficulty of exploiting viral particles, due to their small dimensions. The development of tools for teaching virology is important to encourage educators to expand on the covered topics and connect them to recent findings. Discoveries, such as giant DNA viruses, have provided an opportunity to explore aspects of viral particles in ways never seen before. Coupling these novel findings with techniques already explored by classical virology, including visualization of cytopathic effects on permissive cells, may represent a new way for teaching virology. This work aimed to develop a slide microscope kit that explores giant virus particles and some aspects of animal virus interaction with cell lines, with the goal of providing an innovative approach to virology teaching. METHODS: Slides were produced by staining, with crystal violet, purified giant viruses and BSC-40 and Vero cells infected with viruses of the genera Orthopoxvirus, Flavivirus, and Alphavirus. Slides with amoebae infected with different species of giant viruses and stained with hemacolor reagents were also produced. RESULTS: Staining of the giant viruses allowed better visualization of the viral particles, and this technique highlights the diversity in morphology and sizes among them. Hemacolor staining enabled visualization of viral factories in amoebae, and the staining of infected BSC-40 and Vero cell monolayers with crystal violet highlights plaque-forming units. CONCLUSIONS: This kit was used in practical virology classes for the Biological Sciences course (UFMG, Brazil), and it will soon be made available at a low-cost for elementary school teachers in institutions that have microscopes. We hope this tool will foster an inspiring learning environment.


Asunto(s)
Materiales de Enseñanza , Enseñanza , Virología/educación , Virus , Animales , Línea Celular , Chlorocebus aethiops , Virus Gigantes/fisiología , Humanos , Microscopía/instrumentación , Estudiantes , Células Vero
8.
Virol J ; 16(1): 158, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31842897

RESUMEN

BACKGROUND: After the isolation of Acanthamoeba polyphaga mimivirus (APMV), the study and search for new giant viruses has been intensified. Most giant viruses are associated with free-living amoebae of the genus Acanthamoeba; however other giant viruses have been isolated in Vermamoeba vermiformis, such as Faustovirus, Kaumoebavirus and Orpheovirus. These studies have considerably expanded our knowledge about the diversity, structure, genomics, and evolution of giant viruses. Until now, there has been only one Orpheovirus isolate, and many aspects of its life cycle remain to be elucidated. METHODS: In this study, we performed an in-depth characterization of the replication cycle and particles of Orpheovirus by transmission and scanning electron microscopy, optical microscopy and IF assays. RESULTS: We observed, through optical and IF microscopy, morphological changes in V. vermiformis cells during Orpheovirus infection, as well as increased motility at 12 h post infection (h.p.i.). The viral factory formation and viral particle morphogenesis were analysed by transmission electron microscopy, revealing mitochondria and membrane recruitment into and around the electron-lucent viral factories. Membrane traffic inhibitor (Brefeldin A) negatively impacted particle morphogenesis. The first structure observed during particle morphogenesis was crescent-shaped bodies, which extend and are filled by the internal content until the formation of multi-layered mature particles. We also observed the formation of defective particles with different shapes and sizes. Virological assays revealed that viruses are released from the host by exocytosis at 12 h.p.i., which is associated with an increase of particle counts in the supernatant. CONCLUSIONS: The results presented here contribute to a better understanding of the biology, structures and important steps in the replication cycle of Orpheovirus.


Asunto(s)
Virus ADN/crecimiento & desarrollo , Virus Gigantes/crecimiento & desarrollo , Replicación Viral , Antígenos Virales/análisis , Virus ADN/ultraestructura , Virus Gigantes/ultraestructura , Lobosea/virología , Microscopía , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Virión/química , Virión/ultraestructura
9.
J Craniofac Surg ; 29(6): e617-e618, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29916971

RESUMEN

Necrotizing fasciitis (NF) is a devastating disease that typically affects immunocompromised patients, chronically debilitated patients or drug users, but can also affect healthy patients. Necrotizing fasciitis can rapidly produce septic shock and requires immediate surgical management of the necrotic tissue. It is a bacterial infection that progresses rapidly and has a high mortality generally caused by aerobic and anaerobic bacteria. The patient was immunocompromised and drug user. During treatment, a combination of broad-spectrum antibiotic therapy with Ciprofloxacin and Metronidazole, besides the use of activated charcoal dressing composed of carbonized fabric and impregnated with 0.15% silver nitrate enveloped by layer of fabric without activated carbon, chemical-mechanical debridement with hydrogen peroxide, 0.9% saline, and povidone iodine. According to the patient presented, for the treatment of NF there is a need for broad-spectrum antibiotic therapy associated with surgical debridement, use of activated charcoal for antiseptic compression and general intensive care.


Asunto(s)
Antibacterianos/uso terapéutico , Antiinfecciosos Locales/uso terapéutico , Fascitis Necrotizante/terapia , Adulto , Desbridamiento , Fascitis Necrotizante/complicaciones , Humanos , Huésped Inmunocomprometido , Masculino , Trastornos Relacionados con Sustancias/complicaciones
10.
J Craniofac Surg ; 29(4): e358-e359, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29481499

RESUMEN

Facial fractures can be potentially fatal in polytraumatized patients due to retropositioning tissues to upper airway obstruction. In the first aids, this situation can be reversed using a tracheostomy procedure to break out the airways. However, fractures leading to airway obstruction are rare and according to Richards Classification can be classified into 5 types. The purpose of this article is to report a clinical patient with a bilateral condylar and mandibular symphysis fractures that resulted in airway obstruction and severe mandibular rear projection.


Asunto(s)
Obstrucción de las Vías Aéreas , Fracturas Mandibulares/complicaciones , Adulto , Obstrucción de las Vías Aéreas/etiología , Obstrucción de las Vías Aéreas/cirugía , Humanos , Masculino , Traqueostomía , Adulto Joven
11.
J Craniofac Surg ; 28(4): e325-e327, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28277477

RESUMEN

The macroglossia is a rare condition, congenital or acquired, characterized by hypertrophy of the lingual muscles that can cause both aesthetic and functional changes such as mandibular prognathism and malocclusion. Diagnosis is through clinical examination. Treatment consists of excision of part of the tongue and different surgical techniques have been described in the literature. The keyhole lingual resection technique has shown satisfactory results in reducing the volume and preservation of the neurovascular bundles of the tongue. This work aims to present a clinical report of true macroglossia associated with dental-skeletal discrepancies, submitted to partial glossectomy previously to orthognathic surgery.


Asunto(s)
Glosectomía/métodos , Macroglosia/cirugía , Maloclusión de Angle Clase III/cirugía , Estética Dental , Humanos , Masculino , Lengua/cirugía , Adulto Joven
12.
J Craniofac Surg ; 27(4): e378-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27244201

RESUMEN

Fractures of atrophic mandibles are present on the day by day of buccomaxillofacial surgeons. Mandible atrophy occurs due to tooth loss, which over time induces bone resorption leading to a fragile and susceptible to fracture structure. This paper reports the case of a patient victim of face trauma resulting in atrophic mandible fracture with treatment failure through the use of shared load miniplate. Therefore, a new treatment was performed with miniplate of system 2.4 along with bone graft. After 6 months, the patient was rehabilitated with implant-supported prosthesis installation. It is concluded that for successful treatment of atrophic mandible fractures, the use of rigid plates is necessary, allowing an excellent rehabilitation of the stomatognathic system.


Asunto(s)
Fijación Interna de Fracturas/efectos adversos , Mandíbula/cirugía , Fracturas Mandibulares/cirugía , Trasplante Óseo/métodos , Femenino , Fijación Interna de Fracturas/instrumentación , Humanos , Persona de Mediana Edad , Insuficiencia del Tratamiento , Resultado del Tratamiento
13.
Virus Res ; 340: 199291, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38065303

RESUMEN

Here, the antiviral activity of aminoadamantane derivatives were evaluated against SARS-CoV-2. The compounds exhibited low cytotoxicity to Vero, HEK293 and CALU-3 cells up to a concentration of 1,000 µM. The inhibitory concentration (IC50) of aminoadamantane was 39.71 µM in Vero CCL-81 cells and the derivatives showed significantly lower IC50 values, especially for compounds 3F4 (0.32 µM), 3F5 (0.44 µM) and 3E10 (1.28 µM). Additionally, derivatives 3F5 and 3E10 statistically reduced the fluorescence intensity of SARS-CoV-2 protein S from Vero cells at 10 µM. Transmission microscopy confirmed the antiviral activity of the compounds, which reduced cytopathic effects induced by the virus, such as vacuolization, cytoplasmic projections, and the presence of myelin figures derived from cellular activation in the face of infection. Additionally, it was possible to observe a reduction of viral particles adhered to the cell membrane and inside several viral factories, especially after treatment with 3F4. Moreover, although docking analysis showed favorable interactions in the catalytic site of Cathepsin L, the enzymatic activity of this enzyme was not inhibited significantly in vitro. The new derivatives displayed lower predicted toxicities than aminoadamantane, which was observed for either rat or mouse models. Lastly, in vivo antiviral assays of aminoadamantane derivatives in BALB/cJ mice after challenge with the mouse-adapted strain of SARS-CoV-2, corroborated the robust antiviral activity of 3F4 derivative, which was higher than aminoadamantane and its other derivatives. Therefore, aminoadamantane derivatives show potential broad-spectrum antiviral activity, which may contribute to COVID-19 treatment in the face of emerging and re-emerging SARS-CoV-2 variants of concern.


Asunto(s)
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Humanos , Animales , Ratones , Ratas , Tratamiento Farmacológico de COVID-19 , Células HEK293 , Células Vero , Amantadina , Antivirales/farmacología , Antivirales/uso terapéutico
14.
Res Sq ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464059

RESUMEN

Introduction: Vaccines are essential for the prevention and control of several diseases, indeed, monitoring the immune response generated by vaccines is crucial. The immune response generated by vaccination against SARS-CoV-2 in children and adolescents is not well defined regarding to the intensity and medium to long-term duration of a protective immune response, which may point out the need of booster doses and might support the decisions in public health. Objective: The study aims to evaluate the immunogenicity and safety of inactivated SARS-CoV-2 vaccine (CoronaVac) in a two-dose primary protocol in children and adolescent aging from 3 to 17 years old in Brazil. Methods: Participants were invited to participate in the research at two public healthcare centers located in Serrana (São Paulo) and Belo Horizonte (Minas Gerais), Brazil. Participants underwent medical interviews to gather their medical history, including COVID-19 history and medical records. Physical exams were conducted, including weight, blood pressure, temperature, and pulse rate measurements. Blood samples were obtained from the participants before vaccination, 1 month after the first dose, and 1, 3, and 6 months after the second dose and were followed by a virtual platform for monitoring post-vaccination reactions and symptoms of COVID-19. SARS-CoV-2 genome from Swab samples of COVID-19 positive individuals were sequenced by NGS. Total antibodies were measured by ELISA and neutralizing antibodies to B.1 lineage and Omicron variant (BA.1) quantified by PRNT and VNT. The cellular immune response was evaluated by flow cytometry by the quantification of systemic soluble immune mediators. Results: The follow-up of 640 participants showed that the CoronaVac vaccine (Sinovac/Butantan Institute) was able to significantly induce the production of total IgG antibodies to SARS-CoV-2 and the production of neutralizing antibodies to B.1 lineage and Omicron variant. In addition, a robust cellular immune response was observed with wide release of pro-inflammatory and regulatory mediators in the early post-immunization moments. Adverse events recorded so far have been mild and transient except for seven serious adverse events reported on VigiMed. Conclusions: The results indicate a robust and sustained immune response induced by the CoronaVac vaccine in children and adolescents up to six months, providing evidences to support the safety and immunogenicity of this effective immunizer.

15.
Virus Res ; 323: 199002, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36370917

RESUMEN

Mayaro virus (MAYV) is mainly found in Central and South America and causes a febrile illness followed by debilitating arthritis and arthralgia similar to chikungunya virus (CHIKV). Infection leads to long-term sequelae with a direct impact on the patient's productive capacity, resulting in economic losses. Mayaro fever is a neglected disease due to the limited epidemiological data. In Brazil, it is considered a potential public health risk with the number of cases increasing every year. Most of our knowledge about MAYV biology is inferred from data obtained from other alphaviruses as well as more recent studies on MAYV. Here, we analyzed the kinetics of viral replication through standard growth curves, quantification of intracellular and extracellular particles, and RNA quantification. We compared transmission electron microscopy data during different stages of infection. This approach allowed us to establish a chronological order of events during MAYV replication and its respective timepoints including cell entry through clathrin-mediated endocytosis occurring at 15-30 min, genome replication at 2-3 h, morphogenesis at 4 hpi, and release at 4-6 hpi. We also present evidence of uncharacterized events such as ribosome reorganization as well as clusters of early viral precursors and release through exocytosis in giant forms. Our work sheds new and specific light on the MAYV replication cycle and may contribute to future studies on the field.

16.
Biomolecules ; 13(3)2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36979478

RESUMEN

The present study sought to search for the immunodominance related to the N-terminal, Central and C-terminal regions of HTLV-1 Tax using novel, cutting-edge peptide microarray analysis. In addition, in silico predictions were performed to verify the presence of nine amino acid peptides present along Tax restricted to the human leukocyte antigen (HLA)-A2.02*01 haplotype, as well as to verify the ability to induce pro-inflammatory and regulatory cytokines, such as IFN-γ and IL-4, respectively. Our results indicated abundant dose-dependent reactivity for HLA-A*02:01 in all regions (N-terminal, Central and C-terminal), but with specific hotspots. Furthermore, the results of fold-change over the Tax11-19 reactivity obtained at lower concentrations of HLA-A*02:01 reveal that peptides from the three regions contain sequences that react 100 times more than Tax11-19. On the other hand, Tax11-19 has similar or superior HLA-A*02:01 reactivity at higher concentrations of this haplotype. The in silico analysis showed a higher frequency of IFN-γ-inducing peptides in the N-terminal portion, while the C-terminal portion showed a higher frequency of IL-4 inducers. Taken together, these results shed light on the search for new Tax immunodominant epitopes, in addition to the canonic Tax11-19, for the rational design of immunomodulatory strategies for HTLV-1 chronic diseases.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Humanos , Virus Linfotrópico T Tipo 1 Humano/genética , Antígeno HLA-A2 , Epítopos Inmunodominantes , Productos del Gen tax/genética , Linfocitos T Citotóxicos , Interleucina-4 , Péptidos
17.
PLoS Negl Trop Dis ; 17(6): e0011407, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37276217

RESUMEN

Beginning December 2016, sylvatic yellow fever (YF) outbreaks spread into southeastern Brazil, and Minas Gerais state experienced two sylvatic YF waves (2017 and 2018). Following these massive YF waves, we screened 187 free-living non-human primate (NHPs) carcasses collected throughout the state between January 2019 and June 2021 for YF virus (YFV) using RTqPCR. One sample belonging to a Callithrix, collected in June 2020, was positive for YFV. The viral strain belonged to the same lineage associated with 2017-2018 outbreaks, showing the continued enzootic circulation of YFV in the state. Next, using data from 781 NHPs carcasses collected in 2017-18, we used generalized additive mixed models (GAMMs) to identify the spatiotemporal and host-level drivers of YFV infection and intensity (an estimation of genomic viral load in the liver of infected NHP). Our GAMMs explained 65% and 68% of variation in virus infection and intensity, respectively, and uncovered strong temporal and spatial patterns for YFV infection and intensity. NHP infection was higher in the eastern part of Minas Gerais state, where 2017-2018 outbreaks affecting humans and NHPs were concentrated. The odds of YFV infection were significantly lower in NHPs from urban areas than from urban-rural or rural areas, while infection intensity was significantly lower in NHPs from urban areas or the urban-rural interface relative to rural areas. Both YFV infection and intensity were higher during the warm/rainy season compared to the cold/dry season. The higher YFV intensity in NHPs in warm/rainy periods could be a result of higher exposure to vectors and/or higher virus titers in vectors during this time resulting in the delivery of a higher virus dose and higher viral replication levels within NHPs. Further studies are needed to better test this hypothesis and further compare the dynamics of YFV enzootic cycles between different seasons.


Asunto(s)
Fiebre Amarilla , Virus de la Fiebre Amarilla , Animales , Humanos , Virus de la Fiebre Amarilla/genética , Brasil/epidemiología , Brotes de Enfermedades , Callithrix
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA