Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hum Mol Genet ; 21(14): 3226-36, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22532572

RESUMEN

Tuberous sclerosis complex (TSC) is caused by heterozygous mutations in either the TSC1 (hamartin) or the TSC2 (tuberin) gene. Among the multisystemic manifestations of TSC, the neurodevelopmental features cause the most morbidity and mortality, presenting a considerable clinical challenge. Hamartin and tuberin form a heterodimer that inhibits the mammalian target of rapamycin complex 1 (mTORC1) kinase, a major cellular regulator of protein translation, cell growth and proliferation. Hyperactivated mTORC1 signaling, an important feature of TSC, has prompted a number of preclinical and clinical studies with the mTORC1 inhibitor rapamycin. Equally exciting is the prospect of treating TSC in the perinatal period to block the progression of brain pathologies and allow normal brain development to proceed. We hypothesized that low-dose rapamycin given prenatally and/or postnatally in a well-established neuroglial (Tsc2-hGFAP) model of TSC would rescue brain developmental defects. We developed three treatment regimens with low-dose intraperitoneal rapamycin (0.1 mg/kg): prenatal, postnatal and pre/postnatal (combined). Combined rapamycin treatment resulted in almost complete histologic rescue, with a well-organized cortex and hippocampus almost identical to control animals. Other treatment regimens yielded less complete, but significant improvements in brain histology. To assess how treatment regimens affected cognitive function, we continued rapamycin treatment after weaning and performed behavioral testing. Surprisingly, the animals treated with the combined therapy did not perform as well as postnatally-treated animals in learning and memory tasks. These results have important translational implications in the optimization of the timing and dosage of rapamycin treatment in TSC affected children.


Asunto(s)
Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Neuroglía/efectos de los fármacos , Sirolimus/administración & dosificación , Esclerosis Tuberosa/tratamiento farmacológico , Esclerosis Tuberosa/psicología , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Humanos , Aprendizaje/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Neuroglía/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Esclerosis Tuberosa/embriología , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
Neurobiol Dis ; 51: 93-103, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23123587

RESUMEN

Tuberous sclerosis complex (TSC) is a dominant tumor suppressor disorder caused by mutations in either TSC1 or TSC2. TSC causes substantial neuropathology, often leading to autism spectrum disorders (ASDs) in up to 60% of patients. The anatomic and neurophysiologic links between these two disorders are not well understood. We have generated and characterized a novel TSC mouse model with Purkinje cell specific Tsc2 loss. These Tsc2f/-;Cre mice exhibit progressive Purkinje cell degeneration. Since loss of Purkinje cells is a well reported postmortem finding in patients with ASD, we conducted a series of behavior tests to asses if Tsc2f/-;Cre mice displayed autistic-like deficits. Tsc2f/-;Cre mice demonstrated increased repetitive behavior as assessed with marble burying activity. Using the three chambered apparatus to asses social behavior, we found that Tsc2f/-;Cre mice showed behavioral deficits, exhibiting no preference between a stranger mouse and an inanimate object, or between a novel and a familiar mouse. We also detected social deficits in Tsc2f/f;Cre mice, suggesting that Purkinje cell pathology is sufficient to induce ASD-like behavior. Importantly, social behavior deficits were prevented with rapamycin treatment. Altogether, these results demonstrate that loss of Tsc2 in Purkinje cells in a Tsc2-haploinsufficient background leads to autistic-like behavioral deficits. These studies provide compelling evidence that Purkinje cell loss and/or dysfunction may be an important link between TSC and ASD as well as a general anatomic phenomenon that contributes to the ASD phenotype.


Asunto(s)
Conducta Animal/fisiología , Células de Purkinje/metabolismo , Esclerosis Tuberosa/fisiopatología , Proteínas Supresoras de Tumor/deficiencia , Animales , Niño , Trastornos Generalizados del Desarrollo Infantil/genética , Trastornos Generalizados del Desarrollo Infantil/metabolismo , Trastornos Generalizados del Desarrollo Infantil/fisiopatología , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunohistoquímica , Masculino , Ratones , Células de Purkinje/patología , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
3.
Neurobiol Dis ; 43(1): 113-22, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21419848

RESUMEN

Tuberous sclerosis complex (TSC) is a neurogenetic disorder that often causes brain abnormalities leading to epilepsy, developmental delay, and autism. TSC is caused by inactivating mutations in either of the genes encoding the proteins hamartin (TSC1) and tuberin (TSC2). These proteins form a heterodimer that inhibits the mammalian target of rapamycin complex 1 (mTORC1) pathway, controlling translation and cell growth. Loss of either protein results in dysregulated mTORC1 activation, an important aspect of TSC pathogenesis. About thirty percent of TSC patients have cerebellar pathology that is poorly understood. To investigate the effects of TSC on the cerebellum, we created a mouse model in which the Tsc2 gene was selectively deleted from Purkinje cells starting at postnatal day 6 (P6). The loss of Tsc2 caused a progressive increase in Purkinje cell size and subsequent death from apoptosis. Purkinje cell loss was predominantly cell type specific and associated with motor deficits. Immunohistochemical analysis showed that both endoplasmic reticulum (ER) and oxidative stress were increased in Tsc2-null Purkinje cells. The cell death and ER stress phenotypes were rescued by treatment with the mTORC1 inhibitor rapamycin. To assess whether the murine Purkinje cell loss has a correlate to the human TSC, we analyzed postmortem cerebellum samples from TSC patients and detected Purkinje cell loss in half of the samples. Our results establish a critical role for the TSC complex in Purkinje cell survival by regulating ER and oxidative stress and reveal a novel aspect of TSC neuropathology.


Asunto(s)
Células de Purkinje/patología , Esclerosis Tuberosa/patología , Proteínas Supresoras de Tumor/deficiencia , Adulto , Animales , Apoptosis/fisiología , Tamaño de la Célula , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Femenino , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Mutantes , Persona de Mediana Edad , Estrés Oxidativo/fisiología , Células de Purkinje/metabolismo , Esclerosis Tuberosa/tratamiento farmacológico , Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiología
4.
Hum Mol Genet ; 18(7): 1252-65, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19150975

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant, tumor predisposition disorder characterized by significant neurodevelopmental brain lesions, such as tubers and subependymal nodules. The neuropathology of TSC is often associated with seizures and intellectual disability. To learn about the developmental perturbations that lead to these brain lesions, we created a mouse model that selectively deletes the Tsc2 gene from radial glial progenitor cells in the developing cerebral cortex and hippocampus. These Tsc2 mutant mice were severely runted, developed post-natal megalencephaly and died between 3 and 4 weeks of age. Analysis of brain pathology demonstrated cortical and hippocampal lamination defects, hippocampal heterotopias, enlarged dysplastic neurons and glia, abnormal myelination and an astrocytosis. These histologic abnormalities were accompanied by activation of the mTORC1 pathway as assessed by increased phosphorylated S6 in brain lysates and tissue sections. Developmental analysis demonstrated that loss of Tsc2 increased the subventricular Tbr2-positive basal cell progenitor pool at the expense of early born Tbr1-positive post-mitotic neurons. These results establish the novel concept that loss of function of Tsc2 in radial glial progenitors is one initiating event in the development of TSC brain lesions as well as underscore the importance of Tsc2 in the regulation of neural progenitor pools. Given the similarities between the mouse and the human TSC lesions, this model will be useful in further understanding TSC brain pathophysiology, testing potential therapies and identifying other genetic pathways that are altered in TSC.


Asunto(s)
Encéfalo/patología , Neuroglía/metabolismo , Neuroglía/patología , Esclerosis Tuberosa/patología , Proteínas Supresoras de Tumor/deficiencia , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Integrasas/metabolismo , Malformaciones del Desarrollo Cortical del Grupo II/metabolismo , Malformaciones del Desarrollo Cortical del Grupo II/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Proteínas , Células Madre/metabolismo , Células Madre/patología , Serina-Treonina Quinasas TOR , Factores de Transcripción/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa
5.
Brain Sci ; 4(1): 150-201, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24839550

RESUMEN

Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders.

6.
J Comp Neurol ; 521(16): 3817-31, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23749404

RESUMEN

Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder with variable expressivity. Heterozygous mutations in either of two genes, TSC1 (hamartin) or TSC2 (tuberin), are responsible for most cases. Hamartin and tuberin form a heterodimer that functions as a major cellular inhibitor of the mammalian target of rapamycin complex 1 (mTORC1) kinase. Genotype-phenotype studies suggest that TSC2 mutations are associated with a more severe neurologic phenotype, although the biologic basis for the difference between TSC1- and TSC2-based disease is unclear. Here we performed a study to compare and contrast the brain phenotypes of Tsc1 and Tsc2 single and double mutants. Using Tsc1 and Tsc2 floxed alleles and a radial glial transgenic Cre driver (FVB-Tg(GFAP-cre)25Mes/J), we deleted Tsc1 and/or Tsc2 in radial glial progenitor cells. Single and double mutants had remarkably similar phenotypes: early postnatal mortality, brain overgrowth, laminar disruption, astrogliosis, a paucity of oligodendroglia, and myelination defects. Double Tsc1/Tsc2 mutants died earlier than single mutants, and single mutants showed differences in the location of heterotopias and the organization of the hippocampal stratum pyramidale. The differences were not due to differential mTORC1 activation or feedback inhibition on Akt. These data provide further genetic evidence for individual hamartin and tuberin functions that may explain some of the genotype-phenotype differences seen in the human disease.


Asunto(s)
Encéfalo/citología , Mutación/genética , Neuroglía/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/crecimiento & desarrollo , Diferenciación Celular/genética , Línea Celular Transformada , Supervivencia Celular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
7.
Nano Lett ; 7(9): 2650-4, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17696559

RESUMEN

The ability of near-infrared fluorescence imaging to detect single-walled carbon nanotubes (SWNTs) in organisms and biological tissues has been explored using Drosophila melanogaster (fruit flies). Drosophila larvae were raised on food containing approximately 10 ppm of disaggregated SWNTs. Their viability and growth were not reduced by nanotube ingestion. Near-IR nanotube fluorescence was imaged from intact living larvae, and individual nanotubes in dissected tissue specimens were imaged, structurally identified, and counted to estimate a biodistribution.


Asunto(s)
Materiales Biocompatibles/farmacocinética , Drosophila melanogaster/química , Nanotubos de Carbono/química , Espectrofotometría Infrarroja/métodos , Administración Oral , Animales , Materiales Biocompatibles/administración & dosificación , Drosophila melanogaster/efectos de los fármacos , Especificidad de Órganos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA