Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Musculoskelet Neuronal Interact ; 24(2): 200-208, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38826003

RESUMEN

OBJECTIVES: Bilateral Deficit (BLD) occurs when the force generated by both limbs together is smaller than the sum of the forces developed separately by the two limbs. BLD may be modulated by physical training. Here, were investigated the effects of unilateral or bilateral plyometric training on BLD and neuromuscular activation during lower limb explosive extensions. METHODS: Fourteen young males were randomized into the unilateral (UL_) or bilateral (BL_) training group. Plyometric training (20 sessions, 2 days/week) was performed on a sled ergometer, and consisted of UL or BL consecutive, plyometric lower limb extensions (3-to-5 sets; 8-to-10 repetitions). Before and after training, maximal explosive efforts with both lower limbs or with each limb separately were assessed. Electromyography of representative lower limb muscles was measured. RESULTS: BL_training significantly and largely decreased BLD (p=0.003, effect size=1.63). This was accompanied by the reversion from deficit to facilitation of the electromyography amplitude of knee extensors during bilateral efforts (p=0.007). Conversely, UL_training had negligible effects on BLD (p=0.781). Also, both groups showed similar improvements in their maximal explosive power generated after training. CONCLUSIONS: Bilateral plyometric training can mitigate BLD, and should be considered for training protocols focused on improving bilateral lower limb motor performance.


Asunto(s)
Electromiografía , Extremidad Inferior , Músculo Esquelético , Ejercicio Pliométrico , Humanos , Masculino , Ejercicio Pliométrico/métodos , Extremidad Inferior/fisiología , Adulto Joven , Electromiografía/métodos , Músculo Esquelético/fisiología , Adulto , Fuerza Muscular/fisiología
2.
Arch Phys Med Rehabil ; 105(1): 10-19, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37414239

RESUMEN

OBJECTIVE: To derive and validate a simple, accurate CPR to predict future independent walking ability after SCI at the bedside that does not rely on motor scores and is predictive for those initially classified in the middle of the SCI severity spectrum. DESIGN: Retrospective cohort study. Binary variables were derived, indicating degrees of sensation to evaluate predictive value of pinprick and light touch variables across dermatomes. The optimal single sensory modality and dermatome was used to derive our CPR, which was validated on an independent dataset. SETTING: Analysis of SCI Model Systems dataset. PARTICIPANTS: Individuals with traumatic SCI. The data of 3679 participants (N=3679) were included with 623 participants comprising the derivation dataset and 3056 comprising the validation dataset. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Self-reported ability to walk both indoors and outdoors. RESULTS: Pinprick testing at S1 over lateral heels, within 31 days of SCI, accurately identified future independent walkers 1 year after SCI. Normal pinprick in both lateral heels provided good prognosis, any pinprick sensation in either lateral heel provided fair prognosis, and no sensation provided poor prognosis. This CPR performed satisfactorily in the middle SCI severity subgroup. CONCLUSIONS: In this large multi-site study, we derived and validated a simple, accurate CPR using only pinprick sensory testing at lateral heels that predicts future independent walking after SCI.


Asunto(s)
Reglas de Decisión Clínica , Traumatismos de la Médula Espinal , Humanos , Examen Neurológico , Estudios Retrospectivos , Caminata
3.
Neuromodulation ; 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37140522

RESUMEN

STUDY DESIGN: This is a report of methods and tools for selection of task and individual configurations targeted for voluntary movement, standing, stepping, blood pressure stabilization, and facilitation of bladder storage and emptying using tonic-interleaved excitation of the lumbosacral spinal cord. OBJECTIVES: This study aimed to present strategies used for selection of stimulation parameters for various motor and autonomic functions. CONCLUSIONS: Tonic-interleaved functionally focused neuromodulation targets a myriad of consequences from spinal cord injury with surgical implantation of the epidural electrode at a single location. This approach indicates the sophistication of the human spinal cord circuitry and its important role in the regulation of motor and autonomic functions in humans.

4.
Exp Brain Res ; 240(1): 279-288, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34854934

RESUMEN

Spinal cord epidural stimulation (scES) is an intervention to restore motor function in those with severe spinal cord injury (SCI). Spinal cord lesion characteristics assessed via magnetic resonance imaging (MRI) may contribute to understand motor recovery. This study assessed relationships between standing ability with scES and spared spinal cord tissue characteristics at the lesion site. We hypothesized that the amount of lateral spared cord tissue would be related to independent extension in the ipsilateral lower limb. Eleven individuals with chronic, clinically motor complete SCI underwent spinal cord MRI, and were subsequently implanted with scES. Standing ability and lower limb activation patterns were assessed during an overground standing experiment with scES. This assessment occurred prior to any activity-based intervention with scES. Lesion hyperintensity was segmented from T2 axial images, and template-based analysis was used to estimate spared tissue in anterior, posterior, right, and left spinal cord regions. Regression analysis was used to assess relationships between imaging and standing outcomes. Total volume of spared tissue was related to left (p = 0.007), right (p = 0.005), and bilateral (p = 0.011) lower limb extension. Spared tissue in the left cord region was related to left lower limb extension (p = 0.019). A positive trend (p = 0.138) was also observed between right spared cord tissue and right lower limb extension. In this study, MRI measures of spared spinal cord tissue were significantly related to standing outcomes with scES. These preliminary results warrant future investigation of roles of supraspinal input and MRI-detected spared spinal cord tissue on lower limb motor responsiveness to scES.


Asunto(s)
Traumatismos de la Médula Espinal , Estimulación de la Médula Espinal , Espacio Epidural/diagnóstico por imagen , Humanos , Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/terapia , Posición de Pie
5.
Brain ; 144(2): 420-433, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33367527

RESUMEN

Spinal cord epidural stimulation (scES) has enabled volitional lower extremity movements in individuals with chronic and clinically motor complete spinal cord injury and no clinically detectable brain influence. The aim of this study was to understand whether the individuals' neuroanatomical characteristics or positioning of the scES electrode were important factors influencing the extent of initial recovery of lower limb voluntary movements in those with clinically motor complete paralysis. We hypothesized that there would be significant correlations between the number of joints moved during attempts with scES prior to any training interventions and the amount of cervical cord atrophy above the injury, length of post-traumatic myelomalacia and the amount of volume coverage of lumbosacral enlargement by the stimulation electrode array. The clinical and imaging records of 20 individuals with chronic and clinically motor complete spinal cord injury who underwent scES implantation were reviewed and analysed using MRI and X-ray integration, image segmentation and spinal cord volumetric reconstruction techniques. All individuals that participated in the scES study (n = 20) achieved, to some extent, lower extremity voluntary movements post scES implant and prior to any locomotor, voluntary movement or cardiovascular training. The correlation results showed that neither the cross-section area of spinal cord at C3 (n = 19, r = 0.33, P = 0.16) nor the length of severe myelomalacia (n = 18, r = -0.02, P = 0.93) correlated significantly with volitional lower limb movement ability. However, there was a significant, moderate correlation (n = 20, r = 0.59, P = 0.006) between the estimated percentage of the lumbosacral enlargement coverage by the paddle electrode as well as the position of the paddle relative to the maximal lumbosacral enlargement and the conus tip (n = 20, r = 0.50, P = 0.026) with the number of joints moved volitionally. These results suggest that greater coverage of the lumbosacral enlargement by scES may improve motor recovery prior to any training, possibly because of direct modulatory effects on the spinal networks that control lower extremity movements indicating the significant role of motor control at the level of the spinal cord.


Asunto(s)
Movimiento , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/rehabilitación , Estimulación de la Médula Espinal/métodos , Volición , Adulto , Espacio Epidural , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Resultado del Tratamiento , Adulto Joven
6.
J Musculoskelet Neuronal Interact ; 22(4): 465-473, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36458384

RESUMEN

OBJECTIVES: Electrically-induced or voluntary conditioning-contractions (CC) can be used to affect contractile properties of a subsequent explosive contraction (EC). Here, we aimed at comparing the effect of neuromuscular-electrical-stimulation (NMES) vs voluntary CC performed prior to explosive contractions of the knee extensors. METHODS: A 10 sec NMES CC (100Hz, 1000µs, 10% MVC), or a voluntary contraction (VOL CC) mimicking the NMES CC, preceded an isometric EC of the knee extensors. Explosive contraction was performed with the goal to reach the target (70% MVC) as quickly as possible. RESULTS: All the parameters related with the explosive contractions' muscle-output were similar between protocols (difference ranging from 0.23%, Mean Torque; to 5.8%, Time to Target), except for the Time to Peak Torque, which was lower when preceded by NMES (11.1%, p=0.019). Interestingly, the RTD 0-50 ms_EC was 37.3% higher after the NMES compared with the VOL CC protocol. CONCLUSION: Explosive contraction was potentiated by an NMES CC as compared with a voluntary CC. This may be due to a reduction in descending drive following VOL CC, which has been shown to occur even with low-level voluntary efforts. These findings could be used to improve rehabilitation or training protocols that include conditioning contractions.


Asunto(s)
Sustancias Explosivas , Articulación de la Rodilla , Torque , Contracción Isométrica , Contracción Muscular
7.
Eur J Appl Physiol ; 121(6): 1653-1664, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33656575

RESUMEN

PURPOSE: Neuromuscular Electrical Stimulation (NMES) is commonly used in neuromuscular rehabilitation protocols, and its parameters selection substantially affects the characteristics of muscle activation. Here, we investigated the effects of short pulse width (200 µs) and higher intensity (short-high) NMES or long pulse width (1000 µs) and lower intensity (long-low) NMES on muscle mechanical output and fractional oxygen extraction. Muscle contractions were elicited with 100 Hz stimulation frequency, and the initial torque output was matched by adjusting stimulation intensity. METHODS: Fourteen able-bodied and six spinal cord-injured (SCI) individuals participated in the study. The NMES protocol (75 isometric contractions, 1-s on-3-s off) targeting the knee extensors was performed with long-low or short-high NMES applied over the midline between anterior superior iliac spine and patella protrusion in two different days. Muscle work was estimated by torque-time integral, contractile properties by rate of torque development and half-relaxation time, and vastus lateralis fractional oxygen extraction was assessed by Near-Infrared Spectroscopy (NIRS). RESULTS: Torque-time integral elicited by the two NMES paradigms was similar throughout the stimulation protocol, with differences ranging between 1.4% (p = 0.877; able-bodied, mid-part of the protocol) and 9.9% (p = 0.147; SCI, mid-part of the protocol). Contractile properties were also comparable in the two NMES paradigms. However, long-low NMES resulted in higher fractional oxygen extraction in able-bodied (+ 36%; p = 0.006). CONCLUSION: Long-low and short-high NMES recruited quadriceps femoris motor units that demonstrated similar contractile and fatigability properties. However, long-low NMES conceivably resulted in the preferential recruitment of vastus lateralis muscle fibers as detected by NIRS.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Pierna , Contracción Muscular/fisiología , Paraplejía/rehabilitación , Femenino , Humanos , Masculino , Consumo de Oxígeno/fisiología , Torque , Adulto Joven
8.
Exp Physiol ; 105(10): 1684-1691, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32749719

RESUMEN

NEW FINDINGS: What is the central question of this study? Spinal cord injury results in paralysis and deleterious neuromuscular and autonomic adaptations. Lumbosacral epidural stimulation can modulate motor and/or autonomic functions. Does long-term epidural stimulation for normalizing cardiovascular function affect leg muscle properties? What is the main finding and its importance? Leg lean mass increased after long-term epidural stimulation for cardiovascular function, which was applied in the sitting position and did not activate the leg muscles. Leg muscle strength and fatigue resistance, assessed in a subgroup of individuals, also increased. These adaptations might support interventions for motor recovery and warrant further mechanistic investigation. ABSTRACT: Chronic motor complete spinal cord injury (SCI) results in paralysis and deleterious neuromuscular and autonomic adaptations. Paralysed muscles demonstrate atrophy, loss of force and increased fatigability. Also, SCI-induced autonomic impairment results in persistently low resting blood pressure and heart rate, among other features. We previously reported that spinal cord epidural stimulation (scES) optimized for cardiovascular (CV) function (CV-scES), which is applied in sitting position and does not activate the leg muscles, can maintain systolic blood pressure within a normotensive range during quiet sitting and during orthostatic stress. In the present study, dual-energy X-ray absorptiometry collected from six individuals with chronic clinically motor complete SCI demonstrated that 88 ± 11 sessions of CV-scES (7 days week-1 ; 2 h day-1 in four individuals and 5 h day-1 in two individuals) over a period of ∼6 months significantly increased lower limb lean mass (by 0.67 ± 0.39 kg or 9.4 ± 8.1%; P < 0.001). Additionally, muscle strength and fatigability data elicited by neuromuscular electrical stimulation in three of these individuals demonstrated a general increase (57 ± 117%) in maximal torque output (between 2 and 44 N m in 14 of the 17 muscle groups tested overall) and torque-time integral during intermittent, fatiguing contractions (63 ± 71%; between 7 and 230% in 16 of the 17 muscle groups tested overall). In contrast, whole-body mass and composition did not change significantly. In conclusion, long-term use of CV-scES can have a significant impact on lower limb muscle properties after chronic motor complete SCI.


Asunto(s)
Sistema Cardiovascular/fisiopatología , Espacio Epidural/fisiopatología , Pierna/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/fisiopatología , Adaptación Fisiológica/fisiología , Adulto , Femenino , Humanos , Masculino , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiopatología , Parálisis/fisiopatología , Estimulación de la Médula Espinal/métodos , Torque , Adulto Joven
10.
J Physiol ; 596(4): 647-665, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29266264

RESUMEN

KEY POINTS: Disuse in older adults can critically decrease lower limb muscle power, leading to compromised mobility and overall quality of life. We studied how muscle power and its determinants (muscle mass, single muscle fibre properties and motor control) adapted to 2 weeks of disuse and subsequent 2 weeks of physical training in young and older people. Disuse decreased lower limb muscle power in both groups; however, different adaptations in single muscle fibre properties and co-contraction of leg muscles were observed between young and older individuals. Six physical training sessions performed after disuse promoted the recovery of muscle mass and power. However, they were not sufficient to restore muscle power to pre-disuse values in older individuals, suggesting that further countermeasures are required to counteract the disuse-induced loss of muscle power in older adults. ABSTRACT: Disuse-induced loss of muscle power can be detrimental in older individuals, seriously impairing functional capacity. In this study, we examined the changes in maximal explosive power (MEP) of lower limbs induced by a 14-day disuse (bed-rest, BR) and a subsequent 14-day retraining, to assess whether the impact of disuse was greater in older than in young men, and to analyse the causes of such adaptations. Sixteen older adults (Old: 55-65 years) and seven Young (18-30 years) individuals participated in this study. In a subgroup of eight Old subjects, countermeasures based on cognitive training and protein supplementation were applied. MEP was measured with an explosive ergometer, muscle mass was determined by magnetic resonance, motor control was studied by EMG, and single muscle fibres were analysed in vastus lateralis biopsy samples. MEP was ∼33% lower in Old than in Young individuals, and remained significantly lower (-19%) when normalized by muscle volume. BR significantly affected MEP in Old (-15%) but not in Young. Retraining tended to increase MEP; however, this intervention was not sufficient to restore pre-BR values in Old. Ankle co-contraction increased after BR in Old only, and remained elevated after retraining (+30%). Significant atrophy occurred in slow fibres in Old, and in fast fibres in Young. After retraining, the recovery of muscle fibre thickness was partial. The proposed countermeasures were not sufficient to affect muscle mass and power. The greater impact of disuse and smaller retraining-induced recovery observed in Old highlight the importance of designing suitable rehabilitation protocols for older individuals.


Asunto(s)
Extremidad Inferior/fisiología , Fuerza Muscular , Músculo Esquelético/fisiología , Calidad de Vida , Entrenamiento de Fuerza , Adulto , Reposo en Cama , Ejercicio Físico , Humanos , Inmovilización , Masculino , Persona de Mediana Edad , Recuperación de la Función , Adulto Joven
11.
Eur J Appl Physiol ; 115(2): 429-36, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25344798

RESUMEN

PURPOSE: Microgravity leads to a decline of muscle power especially in the postural muscles of the lower limb. Muscle atrophy primarily contributes to this negative adaptation. Nutritional countermeasures during unloading were shown to possibly mitigate the loss of muscle mass and strength. The aim of this study was to investigate the effects of different diet energy intakes during prolonged inactivity on body composition and lower limbs power output. METHODS: The effects of lower or higher diet energy intake on the decline of maximal explosive power of the lower limbs, as determined on a sledge ergometer before and after 35 days of bed rest, were investigated on two matched groups of young healthy volunteers. Body composition and lean volume of the lower limb were also measured. RESULTS: After bed rest, fat mass increased (+20.5 %) in the higher energy intake group (N = 9), while it decreased (-4.8 %) in the lower energy intake group (N = 10). Also, the loss of body fat-free mass and lean volume of the lower limb was significantly greater in the higher (-4.6 and -10.8 %, respectively) as compared to the lower (-2.4 and -3.7 %, respectively) diet energy intake group. However, the loss of maximal explosive power was similar between the two groups (-25.2 and -29.5 % in the higher and lower energy intake group, respectively; P = 0.440). CONCLUSIONS: The mitigation of loss of muscle mass by means of a moderate caloric diet restriction during prolonged inactivity was not sufficient for reducing the loss of maximal explosive power of the lower limbs.


Asunto(s)
Reposo en Cama/efectos adversos , Ingestión de Energía , Extremidad Inferior/fisiología , Fuerza Muscular , Ingravidez/efectos adversos , Adulto , Estudios de Casos y Controles , Dieta , Ergometría , Humanos , Masculino , Músculo Esquelético/fisiología
12.
Eur J Appl Physiol ; 115(6): 1323-30, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25613402

RESUMEN

PURPOSE: Bilateral deficit (BLD) occurs when the force (or power) generated by both limbs together is smaller than the sum of the forces (or powers) developed separately by the two limbs. The amount of BLD can be altered by neural adaptations brought about by the repetitive execution of specific motor tasks (training). Prolonged disuse also leads to relevant neural adaptations; however, its effects on BLD are still unknown. Thus, the aim of this study was to investigate the effects of a 35-day bed rest on the BLD of the lower limbs. METHODS: Ten young healthy volunteers performed maximal explosive efforts on a sledge ergometer with both lower limbs or with the right and the left limb separately. Electromyography (EMG) of vastus lateralis, rectus femoris, biceps femoris and gastrocnemius medialis was also measured. RESULTS: Before bed rest, maximal explosive power and peak force were significantly higher in monolateral than bilateral efforts (+18.7 and +31.0 %, respectively). Conversely, peak velocity was 11.9 % greater in bilateral than monolateral efforts. BLD attained a value of 18.1 % and was accompanied by lower EMG amplitude of knee extensors (-17.0 %) and gastrocnemius medialis (-11.7 %) during bilateral efforts. Bed rest led to a ~28.0 % loss in both bilateral and monolateral maximal explosive power. Neither BLD magnitude nor the difference in EMG amplitudes as well as in peak force and velocity between bilateral and monolateral efforts were affected by bed rest. CONCLUSIONS: These results suggest that the neuromuscular factors underlying BLD are unaltered after prolonged disuse.


Asunto(s)
Adaptación Fisiológica , Reposo en Cama , Lateralidad Funcional , Pierna/fisiología , Contracción Muscular , Adulto , Humanos , Articulación de la Rodilla/fisiología , Masculino , Actividad Motora , Músculo Esquelético/fisiología
13.
J Exp Biol ; 217(Pt 5): 787-95, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24265425

RESUMEN

The aim of this study was to investigate: (1) the role of , the fraction of (F) and the metabolic cost of transport (CoT) in determining performance during an ultra-endurance competition and (2) the effects of the race on several biomechanical and morphological parameters of the lower limbs that are likely to affect CoT. Eleven runners (aged 29-54 years) participated in an ultra-endurance competition consisting of three running stages of 25, 55 and 13 km on three consecutive days. Anthropometric characteristics, body composition, morphological properties of the gastrocnemius medialis, maximal explosive power of the lower limb and were determined before the competition. In addition, biomechanics of running and CoT were determined, before and immediately after each running stage. Performance was directly proportional to (r=0.77) and F (r=0.36), and inversely proportional to CoT (r=-0.30). Low CoT values were significantly related to high maximal power of the lower limbs (r=-0.74) and vertical stiffness (r=-0.65) and low footprint index (FPI, r=0.70), step frequency (r=0.62) and external work (r=0.60). About 50% of the increase in CoT during the stages of the competition was accounted for by changes in FPI, which represents a global evaluation of medio-lateral displacement of the foot during the whole stance phase, which in turn is associated with the myotendinous characteristics of the lower limb. Thus, lower CoT values were related to greater muscular power and lower FPI, suggesting that a better ankle stability is likely to achieve better performance in an ultra-endurance running competition.


Asunto(s)
Metabolismo Energético , Fatiga Muscular , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología , Resistencia Física , Tendones/fisiología , Adulto , Fenómenos Biomecánicos , Humanos , Masculino , Persona de Mediana Edad , Consumo de Oxígeno , Carrera
14.
Spinal Cord Ser Cases ; 10(1): 44, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977671

RESUMEN

STUDY DESIGN: prospective case series of Yucatan miniature pig spinal cord contusion injury model with comparison to human cases of spinal cord injury (SCI). OBJECTIVES: to describe magnetic resonance imaging (MRI) measures of spinal cord lesion severity along with estimates of lateral corticospinal tracts spared neural tissue in both a less severe and more severe contusion SCI model, as well as to describe their corresponding behavioral outcome changes. SETTING: University laboratory setting. METHODS: Following a more severe and less severe SCI, each pig underwent spinal cord MRI to measure lesion characteristics, along with locomotor and urodynamics outcomes testing. RESULTS: In the pig with more severe SCI, locomotor and urodynamic outcomes were poor, and both the spinal cord lesion volume and damage estimates to the lateral corticospinal tracts were large. Conversely, in the pig with less severe SCI, locomotor and urodynamic outcomes were favorable, with the spinal cord lesion volume and damage estimates to the lateral corticospinal tracts being less pronounced. For two human cases matched on estimates of damage to the lateral corticospinal tract regions, the clinical presentations were similar to the pig outcomes, with more limited mobility and more limited bladder functional independence in the more severe case. CONCLUSIONS: Our initial findings contribute valuable insights to the emergent field of MRI-based evaluation of spinal cord lesions in pig models, offering a promising avenue for understanding and potentially improving outcomes in spinal cord injuries.


Asunto(s)
Modelos Animales de Enfermedad , Imagen por Resonancia Magnética , Traumatismos de la Médula Espinal , Porcinos Enanos , Animales , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/patología , Porcinos , Imagen por Resonancia Magnética/métodos , Humanos , Femenino , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Masculino , Conducta Animal/fisiología , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Médula Espinal/fisiopatología , Recuperación de la Función/fisiología , Estudios Prospectivos , Locomoción/fisiología
15.
J Clin Med ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38592158

RESUMEN

Background: Percutaneous spinal cord epidural stimulation (pSCES) has effectively restored varying levels of motor control in persons with motor complete spinal cord injury (SCI). Studying and standardizing the pSCES configurations may yield specific motor improvements. Previously, reliance on the amplitude of the SCES-evoked potentials (EPs) was used to determine the correct stimulation configurations. Methods: We, hereby, retrospectively examined the effects of wide and narrow-field configurations on establishing the motor recruitment curves of motor units of three different agonist-antagonist muscle groups. Magnetic resonance imaging was also used to individualize SCI participants (n = 4) according to their lesion characteristics. The slope of the recruitment curves using a six-degree polynomial function was calculated to derive the slope ratio for the agonist-antagonist muscle groups responsible for standing. Results: Axial damage ratios of the spinal cord ranged from 0.80 to 0.92, indicating at least some level of supraspinal connectivity for all participants. Despite the close range of these ratios, standing motor performance was enhanced using different stimulation configurations in the four persons with SCI. A slope ratio of ≥1 was considered for the recommended configurations necessary to achieve standing. The retrospectively identified configurations using the supine slope ratio of the recruitment curves of the motor units agreed with that visually inspected muscle EPs amplitude of the extensor relative to the flexor muscles in two of the four participants. Two participants managed to advance the selected configurations into independent standing performance after using tonic stimulation. The other two participants required different levels of assistance to attain standing performance. Conclusions: The findings suggest that the peak slope ratio of the muscle agonists-antagonists recruitment curves may potentially identify the pSCES configurations necessary to achieve standing in persons with SCI.

16.
Neurotrauma Rep ; 5(1): 277-292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515546

RESUMEN

Activity-based training and lumbosacral spinal cord epidural stimulation (scES) have the potential to restore standing and walking with self-balance assistance after motor complete spinal cord injury (SCI). However, improvements in upright postural control have not previously been addressed in this population. Here, we implemented a novel robotic postural training with scES, performed with free hands, to restore upright postural control in individuals with chronic, cervical (n = 5) or high-thoracic (n = 1) motor complete SCI, who had previously undergone stand training with scES using a walker or a standing frame for self-balance assistance. Robotic postural training re-enabled and/or largely improved the participants' ability to control steady standing, self-initiated trunk movements and upper limb reaching movements while standing with free hands, receiving only external assistance for pelvic control. These improvements were associated with neuromuscular activation pattern adaptations above and below the lesion. These findings suggest that the human spinal cord below the level of injury can generate meaningful postural responses when its excitability is modulated by scES, and can learn to improve these responses. Upright postural control improvements can enhance functional motor recovery promoted by scES after severe SCI.

17.
Eur J Appl Physiol ; 113(8): 2125-32, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23604706

RESUMEN

We hypothesized, in a group of obese women (OB), a more significant impairment of aerobic metabolism during knee extension (KE) exercise vs. that described during cycle ergometer exercise, lending support to the role of skeletal muscles in limiting exercise tolerance in OB. Eleven OB (age 29.5 ± 5.5 years, body mass index 43.2 ± 5.4 kg m(-2)) and 10 non-obese controls (CTRL) women were tested. Fat-free mass of a lower-limb (FFMLL) was assessed by a densitometer. Heart rate (HR) and pulmonary O2 uptake (VO2) were determined during incremental exercise tests to voluntary exhaustion carried out on a custom-built KE ergometer and on a cycle ergometer (CE). FFMLL and maximal isometric force of KE muscles were higher in OB vs. CTRL (+42.4 and +46.2 %, respectively). Peak work rate was significantly lower in OB (-18.4 %) vs. CTRL in CE, but not in KE. Expressed in mL min(-1), peak VO2 was not different in OB vs. CTRL in CE and in KE. After it was divided per unit of FFM involved in the exercises, peak VO2 was significantly lower in OB vs. CTRL, both for CE (-19 %) and KE (-33 %). Expressed per unit of exercising muscle mass, peak oxidative function is impaired in OB. The impairment is more pronounced after limitations related to cardiovascular O2 delivery are reduced. In OB muscle hypertrophy and the increased muscle force allow to preserve exercise tolerance during aerobic exercises carried out by relatively small muscle masses.


Asunto(s)
Tolerancia al Ejercicio , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Consumo de Oxígeno , Adulto , Estudios de Casos y Controles , Prueba de Esfuerzo , Femenino , Humanos , Rodilla/fisiología , Obesidad/fisiopatología
18.
J Clin Med ; 12(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959340

RESUMEN

Motor recovery following a complete spinal cord injury is not likely. This is partially due to insurance limitations. Rehabilitation strategies for individuals with this type of severe injury focus on the compensation for the activities of daily living in the home and community and not on the restoration of function. With limited time in therapies, the initial goals must focus on getting the patient home safely without the expectation of recovery of voluntary movement below the level of injury. In this study, we report a case of an individual with a chronic, cervical (C3)-level clinically motor- and sensory-complete injury who was able to perform voluntary movements with both upper and lower extremities when positioned in a sensory-rich environment conducive to the specific motor task. We show how he is able to intentionally perform push-ups, trunk extensions and leg presses only when appropriate sensory information is available to the spinal circuitry. These data show that the human spinal circuitry, even in the absence of clinically detectable supraspinal input, can generate motor patterns effective for the execution of various upper and lower extremity tasks, only when appropriate sensory information is present. Neurorehabilitation in the right sensory-motor environment that can promote partial recovery of voluntary movements below the level of injury, even in individuals diagnosed with a clinically motor-complete spinal cord injury.

19.
Bioengineering (Basel) ; 10(9)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37760167

RESUMEN

Cervical spinal cord injury (SCI) leads to impaired trunk motor control, negatively impacting the performance of activities of daily living in the affected individuals. Improved trunk control with better sitting posture has been previously observed due to neuromuscular electrical stimulation and transcutaneous spinal stimulation, while improved postural stability has been observed with spinal cord epidural stimulation (scES). Hence, we studied how trunk-specific scES impacts sitting independence and posture. Fourteen individuals with chronic, severe cervical SCI with an implanted neurostimulator performed a 5-min tall-sit task without and with trunk-specific scES. Spine posture was assessed by placing markers on five spine levels and evaluating vertical spine inclination angles. Duration of trunk manual assistance was used to assess independence along with the number of independence changes and average independence score across those changes. With scES, the sacrum-L1 inclination and number of independence changes tended to decrease by 1.64 ± 3.16° (p = 0.07; Cohen's d = 0.53) and 9.86 ± 16.8 (p = 0.047; Cohen's d = 0.59), respectively. Additionally, for the participants who had poor sitting independence without scES, level of independence tended to increase by 12.91% [0%, 31.52%] (p = 0.38; Cohen's d = 0.96) when scES was present. Hence, trunk-specific scES promoted improvements in lower spine posture and lower levels of trunk assistance.

20.
Front Neurosci ; 17: 1284581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144208

RESUMEN

Descending motor signals are disrupted after complete spinal cord injury (SCI) resulting in loss of standing and walking. We previously restored standing and trunk control in a person with a T3 complete SCI following implantation of percutaneous spinal cord epidural stimulation (SCES). We, hereby, present a step-by-step procedure on configuring the SCES leads to initiate rhythmic lower limb activation (rhythmic-SCES) resulting in independent overground stepping in parallel bars and using a standard walker. Initially, SCES was examined in supine lying at 2 Hz before initiating stepping-like activity in parallel bars using 20 or 30 Hz; however, single lead configuration (+2, -5) resulted in lower limb adduction and crossing of limbs, impairing the initiation of overground stepping. After 6 months, interleaving the original rhythmic-SCES with an additional configuration (-12, +15) on the opposite lead, resulted in a decrease of the extensive adduction tone and allowed the participant to initiate overground stepping up to 16 consecutive steps. The current paradigm suggests that interleaving two rhythmic-SCES configurations may improve the excitability of the spinal circuitry to better interpret the residual descending supraspinal signals with the ascending proprioceptive inputs, resulting in a stepping-like motor behavior after complete SCI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA