Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Water Sci Technol ; 2017(2): 450-456, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29851397

RESUMEN

This study compares and contrasts the glyphosate removal efficiency of alum sludge (waterworks residue) and Irish peat in aqueous solution. Organic phosphonate of glyphosate aqueous solution was removed in pot tests separately filled with peat and alum sludge, while effluent samples were taken from each pot to analyse the concentration of phosphorus (P) and COD (chemical oxygen demand); physical and chemical analysis for both media before and after use was carried out subsequently. The results show that the P removal capacity of alum sludge was significant (>99%), while the removal capacity of peat was considerably less than 10% after 10 weeks. Both materials significantly reduced the levels of COD, but it was noted that peat had a marginally greater initial P removal capacity (68 ± 22%) and did perform better than alum sludge (57 ± 12%). Moreover, pre-treatment is a crucial step to harness the full potential of peat. Overall, this study provides a scientific clue for sorbents selection when considering alum sludge and peat to maximize their value in practice.


Asunto(s)
Compuestos de Alumbre/análisis , Glicina/análogos & derivados , Suelo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Análisis de la Demanda Biológica de Oxígeno , Glicina/química , Herbicidas/química , Organofosfonatos/análisis , Fósforo/análisis , Glifosato
2.
Water Sci Technol ; 76(2): 471-477, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28726712

RESUMEN

In the last 10 years, the microbial fuel cell (MFC) has been extensively studied worldwide to extract energy from wastewater via electricity generation. More recently, a merged technique of embedding MFC into a constructed wetland (CW) has been developed and appears to be increasingly investigated. The driving force to integrate these two technologies lies in the fact that CWs naturally possess a redox gradient (depending on flow direction and wetland depth), which is required by MFCs as anaerobic anode and aerobic cathode chambers. No doubt, the integration of MFC with a CW will upgrade the CW to allow it to be used for wastewater treatment and, simultaneously, electricity generation, making CWs more sustainable and environmentally friendly. Currently, published work shows that India, China, Ireland, Spain, Germany and Malaysia are involved in the development of this technology although it is in its infant stage and many technical issues are faced on system configuration, operation and maximisation of electricity production. This paper aims to provide an updated review and analysis of the CW-MFC development. Focuses are placed on the experience gained so far from different researchers in the literature and further research directions and proposals are discussed in great detail.


Asunto(s)
Fuentes de Energía Bioeléctrica , Eliminación de Residuos Líquidos/métodos , Humedales , Electricidad , Electrodos , Aguas Residuales
3.
Environ Sci Pollut Res Int ; 31(32): 44691-44716, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965108

RESUMEN

Constructed wetland (CW), a promising, environmentally responsible, and effective green ecological treatment technology, is actively involved in the treatment of various forms of wastewater. Low temperatures will, however, lead to issues including plant dormancy, decreased microbial activity, and ice formation in CWs, which will influence how well CWs process wastewater. Applying CWs successfully and continuously in cold areas is extremely difficult. Therefore, it is crucial to find solutions for the pressing issue of increasing the CWs' ability to process wastewater at low temperatures. This review focuses on the effect of cold climate on CWs (plants, substrates, microorganisms, removal effect of pollutants). It meticulously outlines current strategies to enhance CWs' performance under low-temperature conditions, including modifications for the improvement and optimization of the internal components (i.e., plant and substrate selection, bio-augmentation) and enhancement of the external operation conditions of CWs (such as process combination, effluent recirculation, aeration, heat preservation, and operation parameter optimization). Finally, future perspectives on potential research directions and technological innovations that could strengthen CWs' performance in cold climates are prospected. This review aims to contribute valuable insights into the operation strategies, widespread implementation, and subsequent study of CWs in colder climate regions.


Asunto(s)
Clima Frío , Humedales , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Frío
4.
Rev Sci Instrum ; 93(4): 045108, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35489878

RESUMEN

In this paper, an image-based visual servoing (IBVS) controller with a 6 degree-of-freedom robotic manipulator that tracks moving objects is investigated using the proposed Deep Q-Networks and proportional-integral-derivative (DQN-PID) controller. First, the classical IBVS controller and the problem of feature loss and large steady-state error for tracking moving targets are introduced. Then, a DQN-PID based IBVS method is proposed to solve the problem of feature loss and large steady-state error and improve the servo precision, as the existing methods are hard to use for solve the problems. Specifically, the IBVS method is inherited by our controller to build the tracking model, and a value-based reinforcement learning method is proposed as an adaptive law for dynamically tuning the PID parameters in the discrete space, which can track the moving target and keep the servo feature in the field of the camera. Finally, compared with the different existing methods, the DQN-PID based IBVS method has merits of higher accuracy and more stable tracking, or generalization.

5.
Chemosphere ; 268: 128803, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33143898

RESUMEN

A newly emerged alum sludge-based hybrid constructed wetland-microbial fuel cells (CW-MFCs), i.e. vertical upflow CW coupled MFC as 1st stage and horizontal subsurface flow CW coupled MFC as 2nd stage (VFCW-MFC + HSSFCW-MFC), was firstly developed for swine wastewater treatment and electricity generation. Swine wastewater and multi-set air-cathodes were applied to investigate the pollutants removal behavior and the power production. Six-month trial suggested that the overall removal efficiency of SS, COD, NH4+-N, NO3--N, TN, TP and PO43--P was 76 ± 12.4, 72 ± 7.4, 59 ± 28.3, 69 ± 25.6, 47 ± 19.7, 85 ± 9.5 and 88 ± 8.7%, respectively. The two stages hybrid system (VFCW-MFC + HSSFCW-MFC) continuously generated electrical power with average voltages of 0.44 ± 0.09 and 0.34 ± 0.09 V, and power densities of 33.3 ± 13.81 and 9.0 ± 2.5 mW/m³ in 1st and 2nd stage, respectively. The average net energy recovery (NER) of 1st stage and 2nd stage is in turn 0.91 ± 0.16 and 2.76 ± 0.70 Wh/kg·COD. It indicates that the hybrid CW-MFCs has higher removal efficiency than single stage CW-MFC, while 1st stage plays the major role both in pollutants removal and power generation.


Asunto(s)
Fuentes de Energía Bioeléctrica , Purificación del Agua , Animales , Electricidad , Electrodos , Composición Familiar , Porcinos , Aguas Residuales , Humedales
6.
Rev Sci Instrum ; 92(2): 025010, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648130

RESUMEN

We propose an improved point cloud global descriptor for recognition and grasping of similar workpieces. In the industry, different types of workpieces need to be recognized precisely in some intelligent systems. Deep learning requires a lot of preparation work, and it is difficult to adapt to the variety of workpieces. Furthermore, traditional descriptors based on point pairs cannot meet the requirements of identification. To solve this problem, the Outline Viewpoint Feature Histogram (Outline-VFH) descriptor remains part of the recognition ability of the Viewpoint Feature Histogram (VFH) descriptor and contains an extra outline description, which is established based on the oriented bounding box theory. To validate the effectiveness of the proposed descriptor, experiments were conducted on public dataset and some physical workpieces. The results show that the Outline-VFH is much better than VFH and some other descriptors on recognition and has great potential in vision-based robot grasping applications.

7.
Chemosphere ; 248: 126010, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32028160

RESUMEN

This paper firstly reported a systematic study of using alum sludge (waterworks residue) for H2S adsorption. Various trials were performed at ambient temperature in a fixed bed column to study the effects of H2S flow rate, sorbent bed depth on the alum sludge adsorption efficiency of H2S. The Breakthrough Curves were simulated by the Thomas model, Bed Depth Service Time model and Yoon-Nelson models. The mechanisms of H2S adsorption onto alum sludge was examined by different physiochemical characterizations of exhausted and raw alum sludge. Moreover, the mass transfer coefficients were determined from mathematical descriptions of breakthrough curves. The alum sludge adsorption capacity was determined to be 374.2 mg of H2S/g, slightly decreasing with the increasing flow rate and increasing with the increasing bed depth. All the three models successfully predict breakthrough curves which could be used for scaling-up purposes. The microporous structure, alkaline pH and the inherent metal species of the alum sludge promoted the formation of metal sulphate species. This study demonstrated that alum sludge could be used as cost-effective, largely available, and efficient sorbent for H2S removal.


Asunto(s)
Sulfuro de Hidrógeno/química , Modelos Químicos , Eliminación de Residuos Líquidos/métodos , Adsorción , Compuestos de Alumbre/química , Sulfuro de Hidrógeno/análisis , Modelos Teóricos , Aguas del Alcantarillado
8.
Environ Sci Pollut Res Int ; 27(13): 14863-14871, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32060830

RESUMEN

The unique geographical location of waterworks and wastewater treatment plant (WWTP) in Graulhet (France) profited the environmental resource integration and "Circular Economy." Alum sludge from a local waterworks was introduced to co-conditioning and dewatering with waste-activated sludge from a nearby WWTP to examine the role of the alum sludge in improving the dewaterability of the mixed sludge. Experiments demonstrated that the optimal mixing ratio was 1:1 (waste-activated sludge/alum sludge, v/v). Alum sludge has been shown to beneficially enhance mixed sludge dewaterability, by decreasing both the specific resistance to filtration (SRF) and the capillary suction time (CST). Moreover, the optimal polymer (Sueprfloc-492HMW) dose for the mixed sludge (mix ratio 1:1) was 200 mg/L, highlighting a huge savings (14 times) in polymer addition without alum sludge involvement. In addition, cost-effective analysis of its potential full-scale application has demonstrated that the initial investment could be returned in 11 years. The co-conditioning and dewatering strategy can be viewed as a "win-win" strategy for the Graulhet, France, water and wastewater industry. Graphical abstract.


Asunto(s)
Compuestos de Alumbre , Aguas del Alcantarillado , Filtración , Francia , Eliminación de Residuos Líquidos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA