RESUMEN
ß-Galactosidase (ß-gal) is the gold standard marker of cellular senescence, which is linked with various age-related diseases. Therefore, it is essential to develop more excellent probes that can real-time monitor ß-gal activity in cellular senescence in vivo. Fluorescent/photoacoustic (FL/PA) dual-modal imaging possesses excellent sensitivity and spatial resolution. To our knowledge, there has been no tumor-targeted FL/PA probe to image cellular senescence by monitoring the activity of ß-gal in vivo. Therefore, we developed a tumor-targeted FL/PA probe (Gal-HCy-Biotin) for ß-gal-activatable imaging of tumor senescence. Gal-HCy without tumor-targeted biotin is used as a control probe. Gal-HCy-Biotin is superior to Gal-HCy due to the higher kinetic parameter of Gal-HCy-Biotin than Gal-HCy in vitro. Moreover, biotin could help Gal-HCy-Biotin enter and accumulate in tumor cells with higher FL/PA signal. In detail, Gal-HCy-Biotin or Gal-HCy could image senescent tumor cells with 4.6-fold or 3.5-fold FL enhancement and 4.1-fold or 3.3-fold PA enhancement. Gal-HCy-Biotin or Gal-HCy could image tumor senescence with 2.9-fold or 1.7-fold FL enhancement and 3.8-fold or 1.3-fold PA enhancement. We envision that Gal-HCy-Biotin will be applied for FL/PA imaging of tumor senescence in clinic.
Asunto(s)
Neoplasias , Técnicas Fotoacústicas , Humanos , Biotina , Senescencia Celular , Colorantes Fluorescentes , beta-GalactosidasaRESUMEN
BACKGROUND: The objective was to develop and validate an individualized nomogram to predict severe functional tricuspid regurgitation (S-FTR) after mitral valve replacement (MVR) via retrospective analysis of rheumatic heart disease (RHD) patients' pre-clinical characteristics. METHODS: Between 2001-2015, 442 MVR patients of RHD were examined. Transthoracic echocardiography detected S-FTR, and logistic regression model analyzed its independent predictors. R software established a nomogram prediction model, and Bootstrap determined its theoretical probability, which subsequently was compared with the actual patient probability to calculate the area under the curve (AUC) and calibration plots. Decision curve analysis (DCA) identified its clinical utility. RESULTS: Ninety-six patients developed S-FTR during the follow-up period. Both uni- and multivariate analyses found significant correlations between S-FTR occurrence with gender, age, atrial fibrillation (AF), pulmonary arterial hypertension (PH), left atrial diameter (LAD), and tricuspid regurgitation area (TRA). The individualized nomogram model had the AUC of 0.99 in internal verification. Calibration test indicated high agreement of predicted and actual S-FTR onset. DCA also showed that utilization of those six aforementioned factors was clinically useful. CONCLUSION: The nomogram for the patient characteristics of age, gender, AF, PH, LAD, and TRA found that they were highly predictive for future S-FTR onset within 5 years. This predictive ability therefore allows clinicians to optimize postoperative patient care and avoid unnecessary tricuspid valve surgeries.
Asunto(s)
Insuficiencia de la Válvula Mitral , Insuficiencia de la Válvula Tricúspide , Preescolar , Atrios Cardíacos , Humanos , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/cirugía , Insuficiencia de la Válvula Mitral/cirugía , Estudios Retrospectivos , Insuficiencia de la Válvula Tricúspide/diagnóstico , Insuficiencia de la Válvula Tricúspide/etiología , Insuficiencia de la Válvula Tricúspide/cirugíaRESUMEN
Early diagnosis is crucial to the treatment of cancer. Cathepsin B (CTB) plays an important role in numerous cancers, which is a promising biomarker for early diagnosis of cancer. It is necessary to exploit new probes for visualization of CTB in vivo. Fluorescent/photoacoustic (FL/PA) imaging is a powerful tool for in vivo study which possesses both excellent sensitivity and spatial resolution. To our knowledge, there has been no FL/PA probe to image CTB in vitro or in vivo. Therefore, we developed two CTB-activated FL/PA probes HCy-Cit-Val and HCy-Gly-Leu-Phe-Gly, which could successfully monitor CTB activity in vivo. Both two probes had excellent sensitivity and selectivity in vitro. Cell imaging showed that HCy-Cit-Val or HCy-Gly-Leu-Phe-Gly could image endogenous CTB in lysosome with 6.8-fold or 5.1-fold enhancement of the FL signal and 5.8-fold or 3.4-fold enhancement of the PA signal compared to their inhibitor contrast groups. Tumor imaging in vivo further confirmed the good applicability of these two probes to monitor CTB activity with high sensitivity and spatial resolution. Moreover, the property of HCy-Cit-Val is superior to HCy-Gly-Leu-Phe-Gly due to the higher catalytic efficiency of CTB toward HCy-Cit-Val than HCy-Gly-Leu-Phe-Gly. We envision that our FL/PA probe HCy-Cit-Val will be suitable for clinical early diagnosis of CTB-related cancer in the near future.
Asunto(s)
Neoplasias , Técnicas Fotoacústicas , Secuencia de Aminoácidos , Catepsina B , Colorantes Fluorescentes , Humanos , Neoplasias/diagnóstico por imagenRESUMEN
Hydrogen peroxide (H2O2) is a prominent reactive oxygen species with relative stability, which makes it a potential diagnostic marker for pathological states. Excessive H2O2 in mitochondria leads to oxidative stress and inflammation. However, precisely monitoring the level of H2O2 at specific organelles (e.g., mitochondria) in vivo is still of urgent necessity. Therefore, we rationally designed a mitochondria-targeted near-infrared probe TPP-HCy-BOH for fluorescent/photoacoustic (FL/PA) dual-modal imaging of overproduced H2O2 in an inflamed mouse model. TPP-HCy-BOH had a low LOD (0.348 µM), which is comparable to those of recently reported probes for H2O2 detection. The high kinetic rate constant (kobs = 4.72 × 10-3 s-1) of TPP-HCy-BOH toward H2O2 is superior to recently reported H2O2 probes. Compared to control probe HCy-BOH without the mitochondrial targeting moiety, TPP-HCy-BOH successfully images exogenous or endogenous H2O2 in mitochondria with an additional 2.4-fold FL increase and 4.7-fold PA increase in HeLa cells or additional 2.1-fold FL increase and 3.3-fold PA increase in RAW 264.7 cells. In LPS-induced acute inflammation in vivo, TPP-HCy-BOH is more competent to image overproduced H2O2 with additional 1.6-fold higher sensitivity of FL in abdomen and 2.0-fold higher sensitivity of PA in liver and longer retention time of 0.5 h than HCy-BOH. We anticipate that TPP-HCy-BOH could be employed for the FL/PA dual-modal diagnosis of pathological inflammation in clinic in near future.
Asunto(s)
Peróxido de Hidrógeno/metabolismo , Indicadores y Reactivos/química , Inflamación/diagnóstico por imagen , Mitocondrias/metabolismo , Imagen Óptica/métodos , Técnicas Fotoacústicas/métodos , Animales , Técnicas Biosensibles , Ácidos Borónicos/química , Carbocianinas/química , Células HeLa , Humanos , Ratones , Modelos Animales , Imagen Multimodal , Compuestos Organofosforados/química , Estrés Oxidativo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Sensibilidad y EspecificidadRESUMEN
Fatty acid-induced lipotoxicity plays an important role in the pathogenesis of diabetes mellitus. Our previous studies have documented that lipotoxicity contributes to the onset and development of diabetes via insulin resistance and/or compromised function of the pancreatic ß-cells. However, the underlying molecular mechanisms associating lipotoxicity with insulin resistance remain to be fully elucidated. In this study, we explored the role of TRB3-COP1-SIRT1 in lipotoxicity leading to insulin resistance in hepatocytes. High fat diet (HFD)-fed mice and hepG2 cells stimulated with palmitate were utilized as models of lipid metabolism disorders. We analyzed the interactions of SIRT1 and COP1 with each other and with TRB3 using co-immunoprecipitation, western blotting. SIRT1 ubiquitination was also explored. Animal and cell experiments showed that lipotoxicity induced SIRT1 down-regulation at the protein level without altering the mRNA level, whereas, lipotoxicity led to up-regulation of TRB3 and COP1 at both the gene and protein levels. Mechanistic analysis indicated that COP1 functioned as an E3 Ub-ligase of SIRT1, responsible for its proteasomal degradation under lipotoxic conditions. TRB3 recruited COP1 to SIRT1 to promote its ubiquitination. Our data indicated for the first time that TRB3-COP1-SIRT1 pathway played an important role in lipotoxicity leading to insulin resistance in hepatocytes, and suggested that COP1 could be a potential therapeutic choice for the treatment of diabetes mellitus, with lipotoxicity being the important pathomechanism.
Asunto(s)
Proteínas de Ciclo Celular/fisiología , Resistencia a la Insulina/fisiología , Proteínas Nucleares/fisiología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Represoras/fisiología , Sirtuina 1/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica/fisiología , Células HEK293 , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Lípidos/análisis , Lípidos/sangre , Hígado/química , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Palmitatos/toxicidad , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/fisiología , Proteolisis , ARN Mensajero/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Sirtuina 1/biosíntesis , Sirtuina 1/genética , Ubiquitina-Proteína Ligasas/biosíntesis , Ubiquitina-Proteína Ligasas/genética , UbiquitinaciónRESUMEN
Salmonella enterica serotype Derby is among the three most common serotypes of nontyphoidal Salmonella isolated from patients with diarrhea in China. In this study, 133 Salmonella Derby isolates from human patients (n = 74) and foods of animal origin (n = 59) in Shanghai, China, between September 2013 and December 2014, were selected to study its phenotypic characteristics and genetic diversity. The isolates were subjected to antimicrobial susceptibility testing, plasmid replicon typing, virulence profile determination, and molecular subtyping by pulsed-field gel electrophoresis (PFGE). Isolates were frequently resistant to tetracycline (87.22%), sulfisoxazole (74.44%), and streptomycin (62.41%), and a low frequency of resistance was found toward ofloxacin (3.01%), ceftazidime (2.26%), and cefepime (1.50%); in addition, 93 (69.92%) isolates were multidrug resistant. The most common plasmid incompatibility replicon types were the IncF family (FIA, 51.31%; FIC, 27.82%; and FIB, 21.80%) and IncP types (35.34%): these plasmid types may be associated with the spread of antibiotic resistance and virulence genes. All isolates were positive for the Salmonella pathogenicity island (SPI) gene avrA and the fimbrial gene bcfC from among the 10 virulence genes detected, and most of them carried ssaQ (99.25%), mgtC (97.74%), siiD (98.50%), sopB (97.74%), and sopE (96.99%). PFGE showed 68 patterns in nine main clusters at an 85% similarity threshold. Most of the isolates from different sources possessed the same fingerprints or molecular profiles in each cluster, which strongly suggests the possibility that foods of animal origin, especially pork, serve as an important source for human infection. Moreover, this diversity may suggest strains originating from multiple clones. Therefore, surveillance on this serotype should be strengthened to prevent transmission of Salmonella Derby from foods of animal origin, especially pork, to humans.
Asunto(s)
Antibacterianos/farmacología , Enfermedades Transmitidas por los Alimentos/microbiología , Variación Genética/genética , Carne Roja/microbiología , Infecciones por Salmonella/microbiología , Salmonella enterica/clasificación , Animales , Técnicas de Tipificación Bacteriana , Farmacorresistencia Bacteriana , Electroforesis en Gel de Campo Pulsado , Enfermedades Transmitidas por los Alimentos/epidemiología , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Fenotipo , Plásmidos/genética , Replicón/genética , Infecciones por Salmonella/epidemiología , Salmonella enterica/efectos de los fármacos , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Serogrupo , Porcinos , Factores de Virulencia/genéticaRESUMEN
BACKGROUND: Body mass index (BMI), waist circumference (WC), visceral adiposity index (VAI), triglyceride glucose index (TyG), TyG-BMI, and TyG-WC have been reported as markers of insulin resistance or type 2 diabetes mellitus (T2DM). However, little is known about the associations between the aforementioned markers and the risk of prediabetes and diabetes in first-degree relatives (FDRs) of T2DM patients. METHODS: 1544 FDRs of T2DM patients (635 men and 909 women) were enrolled in the initial cross-sectional study and all of them finished corresponding examinations. Logistic regression analysis and receiver operating characteristic (ROC) curve were used to compare and identify the associations of the six parameters (BMI, WC, VAI, TyG, TyG-BMI and TyG-WC) with the prevalence of prediabetes and diabetes. Subsequently, 452 of them were followed-up for an average of 5 years. Cox proportional hazard regression model was applied to confirm the predictive value of the optimal marker. RESULTS: Among the indices, TyG-WC was more strongly associated with the prevalence of prediabetes and diabetes. Compared with participants in the lowest quartile of TyG-WC, the adjusted odds ratio and 95 % CIs for prediabetes and diabetes was 11.19 (7.62-16.42) for those in the top quartile of TyG-WC. Moreover, the largest AUC was also observed in TyG-WC (0.765, 95 % CIs 0.741-0.789, P < 0.001). The robust predictive value of TyG-WC was further confirmed in the follow-up study (HR: 7.13, 95 % CIs 3.41-14.90, P < 0.001). CONCLUSIONS: TyG-WC is a novel and clinically effective marker for early identifying the risks of prediabetes and diabetes in FDRs of T2DM patients.
Asunto(s)
Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Familia , Glucosa/metabolismo , Triglicéridos/metabolismo , Circunferencia de la Cintura , Adulto , Estudios Transversales , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Estado Prediabético/diagnóstico , Estudios Prospectivos , Curva ROC , Factores de Riesgo , Resultado del TratamientoRESUMEN
Fourteen influenza A(H7N9) viruses were isolated from poultry or the environment in live poultry markets in Guangdong Province, China during 2014-2015. Phylogenetic analysis showed that all viruses were descended from viruses of the second wave of influenza A(H7N9) virus infections during 2013. These viruses can be divided into 2 branches.
Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Animales , China/epidemiología , Subtipo H7N9 del Virus de la Influenza A/genética , Gripe Aviar/virología , Filogenia , Aves de CorralRESUMEN
Inflammatory bowel disease (IBD) is a chronic, recurrent gastrointestinal disorder with elusive etiology. Interleukin-12 (IL-12) and IL-23 have emerged as key proinflammatory mediators/cytokines in IBD pathogenesis. Ustekinumab (UST), targeting IL-12 and IL-23, has demonstrated promising efficacy and safety in the treatment of IBD. Recently, UST has become increasingly favored as a potential first-line treatment option. This review delineates UST's mechanism of action, its clinical applications in IBD, including the response rates, strategies for dose optimization for case of partial or lost response, and potential adverse events. This review aims to offer a comprehensive understanding of UST's role as a therapeutic option in IBD management.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Ustekinumab , Humanos , Ustekinumab/uso terapéutico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Interleucina-12 , Citocinas/uso terapéutico , Interleucina-23RESUMEN
Ligustilide (LIG) is the main active ingredient of Angelica sinensis (Oliv.) Diels, which could promote focal angiogenesis to exert neuroprotection. However, there was no report that verified the exact effects of LIG on endometrial angiogenesis and the pregnancy outcomes. To explore the effects of LIG on low endometrial receptivity (LER) and angiogenesis, pregnancy rats were assigned into Control (saline treatment), LER (hydroxyurea-adrenaline treatment), LIG 20 mg/kg and LIG 40 mg/kg groups. Hematoxylin and eosin (H&E) staining was performed to evaluate endometrial morphology. Quantitative real-time PCR, immunofluorescence staining, western blot and immunohistochemistry staining were employed to assess the expression of endometrial receptivity factors and angiogenesis-related gene/protein, respectively. RNA sequencing was used to analyze the effects of LIG on LER caused by Kidney deficiency and blood stasis. We found that endometrial thickness and the implanted embryo number were substantially reduced in the hydroxyurea-adrenaline-treated pregnancy rats. At the same time, the gene and protein expressions of ERα, LIF, VEGFA and CD31 in the endometrium were markedly reduced, while the expressions of MUC1, E-cadherin were increased in the LER group. Administration of LIG raised the endometrial thickness and implanted embryos, as well as reversed the expressions of these factors. Collectively, our findings revealed that LIG could facilitate embryo implantation via recovery of the endometrium receptivity and promotion of endometrial angiogenesis.
Asunto(s)
Hidroxiurea , Resultado del Embarazo , Embarazo , Femenino , Ratas , Animales , Hidroxiurea/metabolismo , Hidroxiurea/farmacología , Angiogénesis , Endometrio/metabolismo , Epinefrina/metabolismo , Epinefrina/farmacologíaRESUMEN
Epithelial barrier dysfunction and crypt destruction are hallmarks of inflammatory bowel disease (IBD). Intestinal stem cells (ISCs) residing in the crypts play a crucial role in the continuous self-renewal and rapid recovery of intestinal epithelial cells (IECs). However, how ISCs are dysregulated in IBD remains poorly understood. Here, we observe reduced DHX9 protein levels in IBD patients, and mice with conditional DHX9 depletion in the intestinal epithelium (Dhx9ΔIEC) exhibit an increased susceptibility to experimental colitis. Notably, Dhx9ΔIEC mice display a significant reduction in the numbers of ISCs and Paneth cells. Further investigation using ISC-specific or Paneth cell-specific Dhx9-deficient mice demonstrates the involvement of ISC-expressed DHX9 in maintaining epithelial homeostasis. Mechanistically, DHX9 deficiency leads to abnormal R-loop accumulation, resulting in genomic instability and the cGAS-STING-mediated inflammatory response, which together impair ISC function and contribute to the pathogenesis of IBD. Collectively, our findings highlight R-loop-mediated genomic instability in ISCs as a risk factor in IBD.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Estructuras R-Loop , Animales , Humanos , Ratones , ARN Helicasas DEAD-box/metabolismo , Células Epiteliales/metabolismo , Homeostasis , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/metabolismo , Proteínas de Neoplasias/metabolismo , Células de Paneth/metabolismo , Células Madre/metabolismoRESUMEN
Peptidyl arginine deiminase 4 (PAD4) plays a pivotal role in infection and inflammatory diseases by facilitating the formation of neutrophil extracellular traps (NETs). However, the substrates of PAD4 and its exact role in inflammatory bowel disease (IBD) remain unclear. In this study, we employed single-cell RNA sequencing (scRNA-seq) and substrate citrullination mapping to decipher the role of PAD4 in intestinal inflammation associated with IBD. Our results demonstrated that PAD4 deficiency alleviated colonic inflammation and restored intestinal barrier function in a dextran sulfate sodium (DSS)-induced colitis mouse model. scRNA-seq analysis revealed significant alterations in intestinal cell populations, with reduced neutrophil numbers and changes in epithelial subsets upon PAD4 deletion. Gene expression analysis highlighted pathways related to inflammation and epithelial cell function. Furthermore, we found that neutrophil-derived extracellular vesicles (EVs) carrying PAD4 were secreted into intestinal epithelial cells (IECs). Within IECs, PAD4 citrullinates mitochondrial creatine kinase 1 (CKMT1) at the R242 site, leading to reduced CKMT1 protein stability via the autophagy pathway. This action compromises mitochondrial homeostasis, impairs intestinal barrier integrity, and induces IECs apoptosis. IEC-specific depletion of CKMT1 exacerbated intestinal inflammation and apoptosis in mice with colitis. Clinical analysis of IBD patients revealed elevated levels of PAD4, increased CKMT1 citrullination, and decreased CKMT1 expression. In summary, our findings highlight the crucial role of PAD4 in IBD, where it modulates IECs plasticity via CKMT1 citrullination, suggesting that PAD4 may be a potential therapeutic target for IBD.
Asunto(s)
Citrulinación , Inflamación , Enfermedades Inflamatorias del Intestino , Mucosa Intestinal , Ratones Endogámicos C57BL , Neutrófilos , Arginina Deiminasa Proteína-Tipo 4 , Animales , Humanos , Masculino , Ratones , Colitis/patología , Colitis/inducido químicamente , Sulfato de Dextran , Modelos Animales de Enfermedad , Inflamación/patología , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Ratones Noqueados , Neutrófilos/metabolismo , Neutrófilos/inmunología , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Creatina Quinasa/metabolismoRESUMEN
Japanese encephalitis virus (JEV) is a pathogen with a substantial impact on both livestock and human health. However, the critical host factors in the virus life cycle remain poorly understood. Using a library comprising 123411 small guide RNAs (sgRNAs) targeting 19050 human genes, we conducted a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based screen to identify essential genes for JEV replication. By employing knockout or knockdown techniques on genes, we identified eleven human genes crucial for JEV replication, such as prolactin releasing hormone receptor (PRLHR), activating signal cointegrator 1 complex subunit 3 (ASCC3), acyl-CoA synthetase long chain family member 3 (ACSL3), and others. Notably, we found that PRLHR knockdown blocked the autophagic flux, thereby inhibiting JEV infection. Taken together, these findings provide effective data for studying important host factors of JEV replication and scientific data for selecting antiviral drug targets.
Asunto(s)
Sistemas CRISPR-Cas , Virus de la Encefalitis Japonesa (Especie) , ARN Guía de Sistemas CRISPR-Cas , Replicación Viral , Replicación Viral/genética , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/fisiología , Humanos , ARN Guía de Sistemas CRISPR-Cas/genética , Biblioteca de Genes , Animales , Interacciones Huésped-Patógeno/genética , Encefalitis Japonesa/virología , Línea Celular , Células HEK293 , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente EspaciadasRESUMEN
Alkaline phosphatase (ALP) is a tumor marker for early diagnosis and treatment. Tumor targeting can recognize and fight tumor cells more accurately from healthy cells. Glycyrrhetinic acid (GA) is a targeting ligand of liver tumors. Photoacoustic imaging (PAI) and photothermal therapy (PTT) are promising techniques for tumor diagnosis and treatment. The outstanding characteristics of Hemicyanine (HCy) dye make it suitable for tumor diagnosis and treatment. However, using HCy nanoparticle (HCy NP) for liver tumor-targeting PAI and PTT has not been reported. Herein, Probe-1 is developed to enhance PAI and PTT of liver tumors due to GA targeting and intracellular ALP-instructed self-assembly of HCy NP. Compared to Probe-2 without self-assembly ability, Probe-1 displays a 4.6-fold higher PAI signal or 1.7-fold lower half inhibitory concentrations in HepG2 cells. Moreover, Probe-1 shows extended retention time (10 vs 6 h) and 2.1-fold higher PAI signal than Probe-2 in HepG2 tumors. The HepG2 tumors in Group Probe-1 obviously increase 18 °C (Tmax : 55 °C) with a 3.3-fold decreased volume while that in Group Probe-2 mildly increase 9.8 °C (Tmax : 46.8 °C) with a 4.3-fold increased volume. It is envisioned that this smart self-assembly strategy can be easily adjusted for PAI and PTT of more tumors.
Asunto(s)
Neoplasias Hepáticas , Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Terapia Fototérmica , Técnicas Fotoacústicas/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Nanopartículas/uso terapéutico , Fototerapia/métodos , Neoplasias Hepáticas/terapiaRESUMEN
The activation of inflammasome leads to secretion of inflammatory factors and cell pyroptosis that are critical in the pathogenesis of various chronic and acute inflammatory diseases. Recruitment and activation of caspase-1 is a marker of inflammasome activation. However, there is still lack of real-time and efficient methods to detect the activation of inflammasome, especially in vivo. Herein, we developed two activatable caspase-1-responsive fluorescence biosensors, WEHD-HCy and YVAD-HCy, to specifically monitor the activation of inflammasome in vivo. Our in vitro study demonstrated that WEHD-HCy and YVAD-HCy can sensitively and specifically respond to caspase-1 activation. Moreover, these biosensors can efficiency and specifically activated in the common inflammatory disease model, including inflammatory bowel disease, Salmonella infection, and acute arthritis. In particular, WEHD-HCy is more advantageous than YVAD-HCy to specifically image of caspase-1 activity both in vitro and in vivo. These caspase-1-responsive fluorescence biosensors provide an efficient, rapid, and in situ tool for monitoring inflammasome activation, and have the potential to be suitable for clinical diagnosis of various inï¬ammatory diseases associated with inï¬ammasome activation.
RESUMEN
Osteogenesis and angiogenesis are essential for bone homeostasis and repair. Newly formed vessels convey osteogenic progenitors during bone regeneration. However, the lack of continuous and label-free visualization of the bone microvasculature has resulted in little understanding of the neovascular dynamics. Here, we take advantage of optical-resolution photoacoustic microscopy (ORPAM) for label-free, intravital, long-term observation of the bone vascular dynamics, including angiogenesis, remodeling and quantified angiogenic effect of locally-applied vascular endothelial growth factor (VEGF) in the murine tibial defect model. We employed ex vivo confocal microscopy and micro-computed tomography (micro-CT) imaging to verify the positive role of VEGF treatment. VEGF treatment increased the concentration of total hemoglobin, vascular branching, and vascular density, which correlated with more osteoprogenitors and increased bone formation within the defect. These data demonstrated ORPAM as a useful imaging tool that detected functional capillaries to understand hemodynamics, and revealed the effectiveness of locally delivered therapeutic agents with sufficient sensitivity, contributing to the understanding of spatiotemporal regulatory mechanisms on blood vessels during bone regeneration.
Asunto(s)
Tibia , Factor A de Crecimiento Endotelial Vascular , Animales , Ratones , Regeneración Ósea , Microscopía , Neovascularización Fisiológica , Osteogénesis , Tibia/diagnóstico por imagen , Tibia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Microtomografía por Rayos XRESUMEN
RNA helicase DHX9 has been extensively characterized as a transcriptional regulator, which is consistent with its mostly nucleic localization. It is also involved in recognizing RNA viruses in the cytoplasm. However, there is no in vivo data to support the antiviral role of DHX9; meanwhile, as a nuclear protein, if and how nucleic DHX9 promotes antiviral immunity remains largely unknown. Here, we generated myeloid-specific and hepatocyte-specific DHX9 knockout mice and confirmed that DHX9 is crucial for host resistance to RNA virus infections in vivo. By additional knockout MAVS or STAT1 in DHX9-deficient mice, we demonstrated that nucleic DHX9 plays a positive role in regulating interferon-stimulated gene (ISG) expression downstream of type I interferon. Mechanistically, upon interferon stimulation, DHX9 is directly bound to STAT1 and recruits Pol II to the ISG promoter region to participate in STAT1-mediated transcription of ISGs. Collectively, these findings uncover an important role for nucleic DHX9 in antiviral immunity.
Asunto(s)
Interferón Tipo I , Replicación Viral , Animales , Ratones , Antivirales , Ratones Noqueados , Factor de Transcripción STAT1/genética , Replicación Viral/genéticaRESUMEN
Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gastrointestinal tract with unclear etiology and insufficient therapeutic efficacy. The development of specific, effective and safe IBD treatment drugs is of great clinical significance. Curcumin (Cur) is a good candidate to prevent and manage inflammatory diseases (such as IBD) due to its antioxidant and anti-inflammatory effects with safety profile. However, its poor aqueous solubility and instability under physiological conditions greatly limit its therapeutic efficacy. Herein, we exploited a Cur precursor Cur-FFEYp to locally deliver and slowly release Cur at inflamed regions for treatment of IBD by a sequential self-assembly and disassembly strategy. The much higher catalytic efficiency of alkaline phosphatase (ALP) than esterase towards Cur-FFEYp validated the sequential ALP-induced self-assembly with the formation of Cur hydrogel and esterase-guided disassembly with the slow release of Cur. In cell and animal experiments, Cur-FFEYp can effectively enhance the anti-inflammatory effect of Cur on inflammatory macrophages and significantly alleviate two types of IBD. We envision that by using other biomarkers to conduct the sequential self-assembly and disassembly processes and replacing other drugs, our smart strategy could be easily adjusted for the treatment of more diseases or cancers.
Asunto(s)
Curcumina , Enfermedades Inflamatorias del Intestino , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Hidrogeles , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , EsterasasRESUMEN
Natural processes and anthropogenic activities simultaneously control the long-term spatial and temporal variations of groundwater hydrogeochemistry in coalfields. In this study, the spatiotemporal variations and primary controlling factors of deep groundwater hydrogeochemistry in the Carboniferous limestone aquifer of the Huaibei coalfield, North China were investigated using cluster analysis combined with geological conditions, water-rock interactions and mining activities. The analysis data of 176 groundwater samples collected over five years from 20 monitoring wells were subdivided into six clusters through hierarchical cluster analysis. Moreover, principal component analysis, box plots and Piper and Stiff diagrams were employed to analyze the statistical and hydrogeochemical characteristics of each cluster, and to reveal the differences and connections between the clusters. The results show that there are significantly spatial variations in groundwater hydrogeochemistry, while the temporal variations are not evident with only a few notable exceptions. Geological conditions dominate the groundwater hydrogeochemistry by controlling the hydraulic connection between groundwater and meteoric water and the flow conditions of groundwater. Moreover, the types and degrees of diverse water-rock interactions in different regions are another important factor controlling the spatial variations of groundwater hydrogeochemistry. Anthropogenic activities are mainly pumping and drainage, which has led to the overall decline in groundwater levels and the temporal variations of hydrogeochemistry in some zones. The findings of this study not only have important implications for deep groundwater resources management in the Huaibei coalfield, but also provide a research template for other highly exploited coalfields in North China.
Asunto(s)
Minas de Carbón , Agua Subterránea , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisisRESUMEN
BACKGROUND AND AIMS: Regulation of macrophage polarization is a promising strategy for treating inflammatory bowel disease [IBD]. Tollip is an important negative regulator of Toll-like receptor [TLR]-mediated innate immunity with downregulated expression in the colon tissues of patients with IBD. This study aimed to regulate the expression of Tollip to affect macrophage polarization. METHODS: A molecular, targeted immunotherapy method was developed by linking mannose-modified trimethyl chitosan [MTC] with Tollip-expressing plasmids via ionic cross-linking, forming MTC-Tollip nanoparticles with a targeting function. MTC-Tollip selectively targeted mouse intestinal macrophages to regulate the polarization of macrophages for mucosal repair. RESULTS: Orally administered MTC-Tollip significantly elevated Tollip expression in intestinal tissue. Compared with MTC-negative control [NC]-treated mice in which colitis was induced with dextran sodium sulphate [DSS], the MTC-Tollip nanoparticle-treated mice exhibited decreased body weight loss and colon shortening, lower proinflammatory cytokine expression in colon tissues, and greater mucosal barrier integrity. MTC-Tollip treatment decreased TNF-α and iNOS expression but increased CD206 and Arg-1 expression in colon tissue. Tollip overexpression in mouse peritoneal macrophages inhibited lipopolysaccharide [LPS]-induced proinflammatory cytokine production and promoted IL-4-induced M2 expression. The progression of peritoneal macrophages extracted from Tollip-/- mice confirmed the effect of Tollip on macrophage polarization. Western blots showed that Tollip overexpression attenuated the upregulation of TLR pathway-associated targets in M1 macrophages. CONCLUSIONS: MTC nanoparticles can be 'intelligent' carriers in immunotherapy. The modulation of Tollip expression in macrophages may be a novel treatment approach for IBD.