RESUMEN
Background: Repetitive transcranial magnetic stimulation (rTMS) has therapeutic effects on craving in methamphetamine (METH) use disorder (MUD). The chronic abuse of METH causes impairments in executive function, and improving executive function reduces relapse and improves treatment outcomes for drug use disorder. The purpose of this study was to determine whether executive function helped predict patients' responses to rTMS treatment. Methods: This study employed intermittent theta burst stimulation (iTBS) rTMS modalities and observed their therapeutic effects on executive function and craving in MUD patients. MUD patients from an isolated Drug Rehabilitation Institute in China were chosen and randomly allocated to the iTBS group and sham-stimulation group. All participants underwent the Behavior Rating Inventory of Executive Function - Adult Version Scale (BRIEF-A) and Visual Analog Scales (VAS) measurements. Sixty-five healthy adults matched to the general condition of MUD patients were also recruited as healthy controls. Findings: Patients with MUD had significantly worse executive function. iTBS groups had better treatment effects on the MUD group than the sham-stimulation group. Further Spearman rank correlation and stepwise multivariate regression analysis revealed that reduction rates of the total score of the BRIEF-A and subscale scores of the inhibition factor and working memory factor in the iTBS group positively correlated with improvements in craving. ROC curve analysis showed that working memory (AUC = 87.4%; 95% CI = 0.220, 0.631) and GEC (AUC = 0.761%; 95% CI = 0.209, 0.659) had predictive power to iTBS therapeutic efficacy. The cutoff values are 13.393 and 59.804, respectively. Conclusions: The iTBS rTMS had a better therapeutic effect on the executive function of patients with MUD, and the improved executive function had the potential to become a predictor for the efficacy of iTBS modality for MUD treatment. Clinical Trial Registration: ClinicalTrials.gov, identifier: ChiCTR2100046954.
RESUMEN
Magnetic nanomaterials were functionalized with dopamine hydrochloride as the functional reagent to afford a core-shell-type Fe3O4 modified with polydopamine (Fe3O4@PDA) composite, which was used for the adsorption of cadmium ions from an aqueous solution. In addition, the effects of environmental factors on the adsorption capacity were investigated. Furthermore, the adsorption kinetics, isotherm, and thermodynamics of the adsorbents were discussed. Results revealed that the adsorption of cadmium by Fe3O4@PDA reaches equilibrium within 120 min, and kinetic fitting data are consistent with the pseudo-second-order kinetics (R2 > 0.999). The adsorption isotherm of Cd2+ on Fe3O4@PDA was in agreement with the Freundlich model, with the maximum adsorption capacity of 21.58 mg/g. The thermodynamic parameters revealed that adsorption is inherently endothermic and spontaneous. Results obtained from the adsorption-desorption cycles revealed that Fe3O4@PDA exhibits ultra-high adsorption stability and reusability. Furthermore, the adsorbents were easily separated from water under an enhanced external magnetic field after adsorption due to the introduction of an iron-based core. Hence, this study demonstrates a promising magnetic nano-adsorbent for the effective removal of cadmium from cadmium-containing wastewater.