Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Virol ; 95(1): e28255, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36284455

RESUMEN

Kaposi's sarcoma (KS) is the second most common tumor in people infected with human immunodeficiency virus worldwide, but its pathogenesis is still unclear. In this study, we discovered that the expression of GATA-binding protein 3 (GATA3) was lowly expressed in KS tissues and KSHV-infected cells, while microRNA-155 (miR-155) was highly expressed in KS serum and KSHV-infected cells. miR-155 promoted the proliferation, migration and invasion of KSHV infection by targeting GATA3. Further, The KSHV-encoded protein, the Latency associated nuclear antigen (LANA), promotes the proliferation, migration and invasion of KSHV-infected cells by regulating the miR-155/GATA3 axis. Regarding the molecular mechanism, c-Jun and c-Fos interact to form a complex. LANA upregulates the expression of c-Jun and c-Fos and enhances the formation of c-Jun/c-Fos complex. The complex binds to the -95∼-100 bp site of miR-155 promoter and transcriptionally activates miR-155. All in all, LANA enhances the c-Jun/c-Fos interaction, resulting in enhanced transcriptional regulation of miR-155 by the c-Jun/c-Fos complex, thereby downregulating GATA3 and promoting the proliferation, migration and invasion of KSHV-infected cells. The discovery of LANA/c-Jun/c-Fos/miR-155/GATA3 further refines the pathogenesis of KS, potentially opening a new avenue for developing effective drugs against KS.


Asunto(s)
Herpesvirus Humano 8 , MicroARNs , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Línea Celular , Antígenos Virales/metabolismo , Antígenos Nucleares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo
2.
Am J Cancer Res ; 14(5): 2408-2423, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859859

RESUMEN

γ-Synuclein (SNCG) has various biological functions associated with tumorigenesis. However, the role of SNCG in oral squamous cell carcinoma (OSCC) remains unknown. In this study, we found that SNCG expression is associated with the malignancy of OSCC. We showed that SNCG promotes cell proliferation and inhibits apoptosis in OSCC. Mechanistically, we demonstrated for the first time, that SNCG interacts with ERK1/2 and promotes its phosphorylation leading to activation of the JAK2/STAT5b signaling pathway. Subsequent experiments with STAT5b interference and ERK1/2 inhibitor treatment reversed the effects of SNCG on OSCC cell proliferation, apoptosis and cell cycle progression. Our findings suggest that SNCG functions as an oncogene in OSCC by targeting the JAK2/STAT5b axis and thus may be a potential new prognostic marker and therapeutic target in OSCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA