Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 294(18): 7296-7307, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30877201

RESUMEN

The E3 ubiquitin ligase parkin is a critical regulator of mitophagy and has been identified as a susceptibility gene for type 2 diabetes (T2D). However, its role in metabolically active tissues that precipitate T2D development is unknown. Specifically, pancreatic ß cells and adipocytes both rely heavily on mitochondrial function in the regulation of optimal glycemic control to prevent T2D, but parkin's role in preserving quality control of ß cell or adipocyte mitochondria is unclear. Although parkin has been reported previously to control mitophagy, here we show that, surprisingly, parkin is dispensable for glucose homeostasis in both ß cells and adipocytes during diet-induced insulin resistance in mice. We observed that insulin secretion, ß cell formation, and islet architecture were preserved in parkin-deficient ß cells and islets, suggesting that parkin is not necessary for control of ß cell function and islet compensation for diet-induced obesity. Although transient parkin deficiency mildly impaired mitochondrial turnover in ß cell lines, parkin deletion in primary ß cells yielded no deficits in mitochondrial clearance. In adipocyte-specific deletion models, lipid uptake and ß-oxidation were increased in cultured cells, whereas adipose tissue morphology, glucose homeostasis, and beige-to-white adipocyte transition were unaffected in vivo In key metabolic tissues where mitochondrial dysfunction has been implicated in T2D development, our experiments unexpectedly revealed that parkin is not an essential regulator of glucose tolerance, whole-body energy metabolism, or mitochondrial quality control. These findings highlight that parkin-independent processes maintain ß cell and adipocyte mitochondrial quality control in diet-induced obesity.


Asunto(s)
Adipocitos/metabolismo , Homeostasis , Células Secretoras de Insulina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adipocitos/citología , Adipocitos/enzimología , Adiposidad , Animales , Peso Corporal , Diferenciación Celular , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Femenino , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/enzimología , Masculino , Ratones , Mitocondrias/metabolismo , Oxidación-Reducción
2.
Autophagy ; 19(2): 525-543, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35604110

RESUMEN

CLEC16A regulates mitochondrial health through mitophagy and is associated with over 20 human diseases. However, the key structural and functional regions of CLEC16A, and their relevance for human disease, remain unknown. Here, we report that a disease-associated CLEC16A variant lacks a C-terminal intrinsically disordered protein region (IDPR) that is critical for mitochondrial quality control. IDPRs comprise nearly half of the human proteome, yet their mechanistic roles in human disease are poorly understood. Using carbon detect NMR, we find that the CLEC16A C terminus lacks secondary structure, validating the presence of an IDPR. Loss of the CLEC16A C-terminal IDPR in vivo impairs mitophagy, mitochondrial function, and glucose-stimulated insulin secretion, ultimately causing glucose intolerance. Deletion of the CLEC16A C-terminal IDPR increases CLEC16A ubiquitination and degradation, thus impairing assembly of the mitophagy regulatory machinery. Importantly, CLEC16A stability is dependent on proline bias within the C-terminal IDPR, but not amino acid sequence order or charge. Together, we elucidate how an IDPR in CLEC16A regulates mitophagy and implicate pathogenic human gene variants that disrupt IDPRs as novel contributors to diabetes and other CLEC16A-associated diseases.Abbreviations : CAS: carbon-detect amino-acid specific; IDPR: intrinsically disordered protein region; MEFs: mouse embryonic fibroblasts; NMR: nuclear magnetic resonance.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Mitofagia , Humanos , Animales , Ratones , Mitofagia/genética , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Autofagia , Fibroblastos/metabolismo , Ubiquitinación , Proteínas de Transporte de Monosacáridos/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA