Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(12): 1997-2009, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34999772

RESUMEN

Tubulin-associated unit (Tau) is a microtubule-associated protein, whose abnormal phosphorylation and deposition in the brain characterizes a range of neurodegenerative diseases called tauopathies. Recent clinical (post-mortem) and pre-clinical evidence suggests that Huntington's disease (HD), an autosomal dominant neurodegenerative disorder, could be considered as a tauopathy. Studies have found the presence of hyperphosphorylated tau, altered tau isoform ratio and aggregated tau in HD brains. However, little is known about the implication of tau in the development of HD pathophysiology, which includes motor, cognitive and affective symptoms. To shine a light on the involvement of tau in HD, our present study aimed at (i) knocking out tau expression and (ii) expressing a transgene encoding mutant human tau in the R6/1 mouse model of HD. We hypothesized that expression of the mutant human tau transgene in HD mice would worsen the HD phenotype, while knocking out endogenous mouse tau in HD mice would improve some behavioral deficits displayed by HD mice. Our data suggest that neither the expression of a tau transgene nor the ablation of tau expression impacted the progression of the HD motor, cognitive and affective phenotypes. Supporting these behavioral findings, we also found that modulating tau expression had no effect on brain weights in HD mice. We also report that expression of the tau transgene increased the weight of WT and HD male mice, whereas tau ablation increased the weight of HD females only. Together, our results indicate that tau might not be as important in regulating the onset and progression of HD symptomatology as previously proposed.


Asunto(s)
Enfermedad de Huntington , Tauopatías , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Mutación con Ganancia de Función , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Transgénicos , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Brain Behav Immun ; 116: 404-418, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142919

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder involving psychiatric, cognitive and motor deficits, as well as peripheral symptoms, including gastrointestinal dysfunction. The R6/1 HD mouse model expresses a mutant human huntingtin transgene and has been shown to provide an accurate disease model. Recent evidence of gut microbiome disruption was shown in preclinical and clinical HD. Therefore, we aimed to assess the potential role of gut microbial modulation in the treatment of HD. The R6/1 HD mice and wild-type littermate controls were randomised to receive diets containing different amounts of fibre: high-fibre (10 % fibre), control (5 % fibre), or zero-fibre (0 % fibre), from 6 to 20 weeks of age. We characterized the onset and progression of motor, cognitive and affective deficits, as well as gastrointestinal function and gut morphological changes. Faeces were collected for gut microbiome profiling using 16S rRNA sequencing, at 14 and 20 weeks of age. When compared to the control diet, high-fibre diet improved the performance of HD mice in behavioral tests of cognitive and affective function, as well as the gastrointestinal function of both HD and wild-type mice. While the diets changed the beta diversity of wild-type mice, no statistical significance was observed at 14 or 20 weeks of age within the HD mice. Analysis of Composition of Microbiomes with Bias Correction (ANCOM-BC) models were performed to evaluate microbiota composition, which identified differences, including a decreased relative abundance of the phyla Actinobacteriota, Campylobacterota and Proteobacteria and an increased relative abundance of the families Bacteroidaceae, Oscillospiraceae and Ruminococcaceae in HD mice when compared to wild-type mice after receiving high-fibre diet. PICRUSt2 revealed that high-fibre diet also decreased potentially pathogenic functional pathways in HD. In conclusion, high-fibre intake was effective in enhancing gastrointestinal function, cognition and affective behaviors in HD mice. These findings indicate that dietary fibre interventions may have therapeutic potential in Huntington's disease to delay clinical onset, and have implications for related disorders exhibiting dysfunction of the gut-brain axis.


Asunto(s)
Enfermedad de Huntington , Humanos , Ratones , Animales , Enfermedad de Huntington/terapia , Enfermedad de Huntington/genética , Ratones Transgénicos , ARN Ribosómico 16S , Cognición , Modelos Animales de Enfermedad , Fibras de la Dieta
3.
J Neurochem ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019032

RESUMEN

Psilocybin is the main psychoactive compound found in hallucinogenic/magic mushrooms and can bind to both serotonergic and tropomyosin receptor kinase b (TrkB) receptors. Psilocybin has begun to show efficacy for a range of neuropsychiatric conditions, including treatment-resistant depression and anxiety disorders; however, neurobiological mechanisms are still being elucidated. Clinical research has found that psilocybin can alter functional connectivity patterns in human brains, which is often associated with therapeutic outcomes. However, preclinical research affords the opportunity to assess the potential cellular mechanisms by which psilocybin may exert its therapeutic effects. Preclinical rodent models can also facilitate a more tightly controlled experimental context and minimise placebo effects. Furthermore, where there is a rationale, preclinical researchers can investigate psilocybin administration in neuropsychiatric conditions that have not yet been researched clinically. As a result, we have systematically reviewed the knowledge base, identifying 82 preclinical studies which were screened based on specific criteria. This resulted in the exclusion of 44 articles, with 34 articles being included in the main review and another 2 articles included as Supporting Information materials. We found that psilocybin shows promise as a lead candidate molecule for treating a variety of neuropsychiatric conditions, albeit showing the most efficacy for depression. We discuss the experimental findings, and identify possible mechanisms whereby psilocybin could invoke therapeutic changes. Furthermore, we critically evaluate the between-study heterogeneity and possible future research avenues. Our review suggests that preclinical rodent models can provide valid and translatable tools for researching novel psilocybin-induced molecular and cellular mechanisms, and therapeutic outcomes.

4.
Neurobiol Dis ; 185: 106223, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37423502

RESUMEN

Obsessive-compulsive and related disorders (OCRD) is an emergent class of psychiatric illnesses that contributes substantially to the global mental health disease burden. In particular, the prototypical illness, obsessive-compulsive disorder (OCD), has a profoundly deleterious effect on the quality of life of those with lived experience. Both clinical and preclinical studies have investigated the genetic and environmental influences contributing to the pathogenesis of obsessive-compulsive and related disorders. Significant progress has been made in recent years in our understanding of the genetics of OCD, along with the critical role of common environmental triggers (e.g., stress). Some of this progress can be attributed to the sophistication of rodent models used in the field, particularly genetic mutant models, which demonstrate promising construct, face, and predictive validity. However, there is a paucity of studies investigating how these genetic and environmental influences interact to precipitate the behavioural, cellular, and molecular changes that occur in OCD. In this review, we assert that preclinical studies offer a unique opportunity to carefully manipulate environmental and genetic factors, and in turn to interrogate gene-environment interactions and relevant downstream sequelae. Such studies may serve to provide a mechanistic framework to build our understanding of the pathogenesis of complex neuropsychiatric disorders such as OCD. Furthermore, understanding gene-environment interactions and pathogenic mechanisms will facilitate precision medicine and other future approaches to enhance treatment, reduce side-effects of therapeutic interventions, and improve the lives of those suffering from these devastating disorders.


Asunto(s)
Trastorno Obsesivo Compulsivo , Calidad de Vida , Humanos , Trastorno Obsesivo Compulsivo/genética , Trastorno Obsesivo Compulsivo/psicología , Interacción Gen-Ambiente , Ansiedad
5.
Neurobiol Dis ; 176: 105933, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436748

RESUMEN

In Huntington's disease (HD), a key pathological feature includes the development of inclusion-bodies of fragments of the mutant huntingtin protein in the neurons of the striatum and hippocampus. To examine the molecular changes associated with inclusion-body formation, we applied MALDI-mass spectrometry imaging and deuterium pulse labelling to determine lipid levels and synthesis rates in the hippocampus of a transgenic mouse model of HD (R6/1 line). The R6/1 HD mice lacked inclusions in the hippocampus at 6 weeks of age (pre-symptomatic), whereas inclusions were pervasive by 16 weeks of age (symptomatic). Hippocampal subfields (CA1, CA3 and DG), which formed the highest density of inclusion formation in the mouse brain showed a reduction in the relative abundance of neuron-enriched lipids that have roles in neurotransmission, synaptic plasticity, neurogenesis, and ER-stress protection. Lipids involved in the adaptive response to ER stress (phosphatidylinositol, phosphatidic acid, and ganglioside classes) displayed increased rates of synthesis in HD mice relative to WT mice at all the ages examined, including prior to the formation of the inclusion bodies. Our findings, therefore, support a role for ER stress occurring pre-symptomatically and potentially contributing to pathological mechanisms underlying HD.


Asunto(s)
Enfermedad de Huntington , Ratones , Animales , Ratones Transgénicos , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Lípidos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
6.
Neurobiol Dis ; 148: 105199, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33249136

RESUMEN

BACKGROUND: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder with onset and severity of symptoms influenced by various environmental factors. Recent discoveries have highlighted the importance of the gastrointestinal microbiome in mediating the gut-brain-axis bidirectional communication via circulating factors. Using shotgun sequencing, we investigated the gut microbiome composition in the R6/1 transgenic mouse model of HD from 4 to 12 weeks of age (early adolescent through to adult stages). Targeted metabolomics was also performed on the blood plasma of these mice (n = 9 per group) at 12 weeks of age to investigate potential effects of gut dysbiosis on the plasma metabolome profile. RESULTS: Modelled time profiles of each species, KEGG Orthologs and bacterial genes, revealed heightened volatility in the R6/1 mice, indicating potential early effects of the HD mutation in the gut. In addition to gut dysbiosis in R6/1 mice at 12 weeks of age, gut microbiome function was perturbed. In particular, the butanoate metabolism pathway was elevated, suggesting increased production of the protective SCFA, butyrate, in the gut. No significant alterations were found in the plasma butyrate and propionate levels in the R6/1 mice at 12 weeks of age. The statistical integration of the metagenomics and metabolomics unraveled several Bacteroides species that were negatively correlated with ATP and pipecolic acid in the plasma. CONCLUSIONS: The present study revealed the instability of the HD gut microbiome during the pre-motor symptomatic stage of the disease which may have dire consequences on the host's health. Perturbation of the HD gut microbiome function prior to significant cognitive and motor dysfunction suggest the potential role of the gut in modulating the pathogenesis of HD, potentially via specific altered plasma metabolites which mediate gut-brain signaling.


Asunto(s)
Enfermedades Asintomáticas , Encéfalo/metabolismo , Disbiosis/metabolismo , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/metabolismo , Enfermedad de Huntington/metabolismo , Metabolómica , Metagenómica , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Disbiosis/microbiología , Ácidos Grasos Volátiles/metabolismo , Tracto Gastrointestinal/microbiología , Enfermedad de Huntington/microbiología , Espectrometría de Masas , Ratones , Ratones Transgénicos
7.
Neurobiol Dis ; 142: 104958, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32526274

RESUMEN

Huntington's disease (HD) is an extraordinary disorder that usually strikes when individuals are in the prime of their lives, as was the case for the influential 20th century musician Woody Guthrie. HD demonstrates the exceptionally fine line between life and death in such 'genetic diseases', as the only difference between those who suffer horribly and die slowly of this disease is often just a handful of extra tandem repeats (beyond the normal polymorphic range) in a genome that constitutes over 3 billion paired nucleotides of DNA. Furthermore, HD presents as a complex and heterogenous combination of psychiatric, cognitive and motor symptoms, so can appear as an unholy trinity of 'three disorders in one'. The autosomal dominant nature of the disorder is also extremely challenging for affected families, as a 'flip of a coin' dictates which children inherit the mutation from their affected parent, and the gene-negative family members bear the burden of caring for the other half of the family that is affected. In this review, we will focus on one of the earliest, and most devastating, symptoms associated with HD, depression, which has been reported to affect approximately half of gene-positive HD family members. We will discuss the pathogenesis of HD, and depressive symptoms in particular, including molecular and cellular mechanisms, and potential genetic and environmental modifiers. This expanding understanding of HD pathogenesis may not only lead to novel therapeutic options for HD families, but may also provide insights into depression in the wider population, which has the greatest burden of disease of any disorder and an enormous unmet need for new therapies.


Asunto(s)
Depresión/psicología , Trastorno Depresivo/psicología , Enfermedad de Huntington/psicología , Depresión/genética , Trastorno Depresivo/genética , Humanos , Enfermedad de Huntington/genética
8.
Neurobiol Dis ; 134: 104621, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31628992

RESUMEN

The last decade has witnessed an exponentially growing interest in gut microbiota and the gut-brain axis in health and disease. Accumulating evidence from preclinical and clinical research indicate that gut microbiota, and their associated microbiomes, may influence pathogenic processes and thus the onset and progression of various diseases, including neurological and psychiatric disorders. In fact, gut dysbiosis (microbiota dysregulation) has been associated with a range of neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's and motor neuron disease, as well as multiple sclerosis. The gut microbiota constitutes a dynamic microbial system constantly challenged by many biological variables, including environmental factors. Since the gut microbiota constitute a changeable and experience-dependent ecosystem, they provide potential therapeutic targets that can be modulated as new interventions for dysbiosis-related disorders, including neurodegenerative diseases. This article reviews the evidence for environmental modulation of gut microbiota and its relevance to brain disorders, exploring in particular the implications for neurodegenerative diseases. We will focus on three major environmental factors that are known to influence the onset and progression of those diseases, namely exercise, diet and stress. Further exploration of environmental modulation, acting via both peripheral (e.g. gut microbiota and associated metabolic dysfunction or 'metabolopathy') and central (e.g. direct effects on CNS neurons and glia) mechanisms, may lead to the development of novel therapeutic approaches, such as enviromimetics, for a wide range of neurological and psychiatric disorders.


Asunto(s)
Dieta , Ejercicio Físico , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Estrés Psicológico , Animales , Disbiosis , Humanos , Enfermedades Neurodegenerativas/microbiología , Enfermedades Neurodegenerativas/fisiopatología
9.
Neurobiol Dis ; 135: 104268, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30194046

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a trinucleotide repeat expansion in the huntingtin (HTT) gene, which is expressed ubiquitously throughout the brain and peripheral tissues. Whilst the focus of much research has been on the cognitive, psychiatric and motor symptoms of HD, the extent of peripheral pathology and its potential impact on central symptoms has been less intensely explored. Disruption of the gastrointestinal microbiome (gut dysbiosis) has been recently reported in a number of neurological and psychiatric disorders, and therefore we hypothesized that it might also occur in HD. We have used 16S rRNA amplicon sequencing to characterize the gut microbiome in the R6/1 transgenic mouse model of HD, relative to littermate wild-type controls. We report that there is a significant difference in microbiota composition in HD mice at 12 weeks of age. Specifically, we observed an increase in Bacteriodetes and a proportional decrease in Firmicutes in the HD gut microbiome. In addition, we observed an increase in microbial diversity in male HD mice, compared to wild-type controls, but no differences in diversity were observed in female HD mice. The gut dysbiosis observed coincided with impairment in body weight gain despite higher food intake as well as motor deficits at 12 weeks of age. Gut dysbiosis was also associated with a change in the gut microenvironment, as we observed higher fecal water content in HD mice at 12 weeks of age. This study provides the first evidence of gut dysbiosis in HD.


Asunto(s)
Encéfalo/metabolismo , Disbiosis/genética , Microbioma Gastrointestinal/genética , Enfermedad de Huntington/genética , Animales , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Masculino , Ratones Transgénicos , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/metabolismo , Expansión de Repetición de Trinucleótido/genética
10.
Hum Mol Genet ; 25(14): 2923-2933, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27179791

RESUMEN

Glutamatergic dysfunction has been implicated in the pathogenesis of depressive disorders and Huntington's disease (HD), in which depression is the most common psychiatric symptom. Synaptic glutamate homeostasis is regulated by cystine-dependent glutamate transporters, including GLT-1 and system xc- In HD, the enzyme regulating cysteine (and subsequently cystine) production, cystathionine-γ-lygase, has recently been shown to be lowered. The aim of the present study was to establish whether cysteine supplementation, using N-acetylcysteine (NAC) could ameliorate glutamate pathology through the cystine-dependent transporters, system xc- and GLT-1. We demonstrate that the R6/1 transgenic mouse model of HD has lower basal levels of cystine, and showed depressive-like behaviors in the forced-swim test. Administration of NAC reversed these behaviors. This effect was blocked by co-administration of the system xc- and GLT-1 inhibitors CPG and DHK, showing that glutamate transporter activity was required for the antidepressant effects of NAC. NAC was also able to specifically increase glutamate in HD mice, in a glutamate transporter-dependent manner. These in vivo changes reflect changes in glutamate transporter protein in HD mice and human HD post-mortem tissue. Furthermore, NAC was able to rescue changes in key glutamate receptor proteins related to excitotoxicity in HD, including NMDAR2B. Thus, we have shown that baseline reductions in cysteine underlie glutamatergic dysfunction and depressive-like behavior in HD and these changes can be rescued by treatment with NAC. These findings have implications for the development of new therapeutic approaches for depressive disorders.


Asunto(s)
Acetilcisteína/administración & dosificación , Depresión/tratamiento farmacológico , Transportador 2 de Aminoácidos Excitadores/genética , Enfermedad de Huntington/tratamiento farmacológico , Receptores de N-Metil-D-Aspartato/genética , Animales , Autopsia , Conducta Animal/efectos de los fármacos , Emparejamiento Cromosómico/efectos de los fármacos , Emparejamiento Cromosómico/genética , Cistationina gamma-Liasa/biosíntesis , Cistationina gamma-Liasa/genética , Cistina/biosíntesis , Depresión/genética , Depresión/fisiopatología , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Ratones , Ratones Transgénicos
11.
Epilepsia ; 59(7): e114-e119, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29858497

RESUMEN

Patients with epilepsy often have mood disorders, and these are commonly treated with antidepressant drugs. Although these drugs are often successful in mitigating depressive symptoms, how they affect the epileptogenic processes has been little studied. Recent evidence has demonstrated that treatment with selective serotonin reuptake inhibitor (SSRI) antidepressant drugs adversely promotes epileptogenesis, which may be of great concern considering the number of patients exposed to these drugs. This study investigated 5-HT2A receptor signaling as a potential mechanism driving the pro-epileptogenic effects of the prototypical SSRI fluoxetine. Male homozygous 5-HT2A receptor knockout mice or wild-type littermates (n = 9-14/group) were treated with continuous fluoxetine (10 mg kg-1 d-1 , sc) or vehicle and subjected to electrical kindling of the amygdala. Compared to vehicle, fluoxetine treatment accelerated kindling epileptogenesis (P < .001), but there was no effect of genotype (P = .75), or any treatment x genotype interaction observed (P = .90). Of interest, fluoxetine treatment increased afterdischarge thresholds in both genotypes (P = .007). We conclude that treatment with fluoxetine promotes epileptogenesis in mice, but this effect is not mediated by 5-HT2A receptors. This suggests that antidepressants may accelerate the onset of acquired epilepsy in patients who have experienced epileptogenic cerebral insults.


Asunto(s)
Fluoxetina/farmacología , Excitación Neurológica/efectos de los fármacos , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Convulsiones/inducido químicamente , Amígdala del Cerebelo/efectos de los fármacos , Animales , Genotipo , Homocigoto , Cuidados a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Serotonina 5-HT2A/genética , Factores de Riesgo , Transducción de Señal/efectos de los fármacos
12.
Neurobiol Learn Mem ; 139: 37-49, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27988312

RESUMEN

Using a Matlab classification algorithm, we demonstrate that a highly salient distal cue array is required for significantly increased likelihoods of spatial search strategy selection during Morris water maze spatial learning. We hypothesized that increased spatial search strategy selection during spatial learning would be the key measure demonstrating the formation of an allocentric map to the escape location. Spatial memory, as indicated by quadrant preference for the area of the pool formally containing the hidden platform, was assessed as the main measure that this allocentric map had formed during spatial learning. Our C57BL/6J wild-type (WT) mice exhibit quadrant preference in the highly salient cue paradigm but not the low, corresponding with a 120% increase in the odds of a spatial search strategy selection during learning. In contrast, quadrant preference remains absent in serotonin 1A receptor (5-HT1AR) knockout (KO) mice, who exhibit impaired search strategy selection during spatial learning. Additionally, we also aimed to assess the impact of the quality of the distal cue array on the spatial learning curves of both latency to platform and path length using mixed-effect regression models and found no significant associations or interactions. In contrast, we demonstrated that the spatial learning curve for search strategy selection was absent during training in the low saliency paradigm. Therefore, we propose that allocentric search strategy selection during spatial learning is the learning parameter in mice that robustly indicates the formation of a cognitive map for the escape goal location. These results also suggest that both latency to platform and path length spatial learning curves do not discriminate between allocentric and egocentric spatial learning and do not reliably predict spatial memory formation. We also show that spatial memory, as indicated by the absolute time in the quadrant formerly containing the hidden platform alone (without reference to the other areas of the pool), was not sensitive to cue saliency or impaired in 5-HT1AR KO mice. Importantly, in the absence of a search strategy analysis, this suggests that to establish that the Morris water maze has worked (i.e. control mice have formed an allocentric map to the escape goal location), a measure of quadrant preference needs to be reported to establish spatial memory formation. This has implications for studies that claim hippocampal functioning is impaired using latency to platform or path length differences within the existing Morris water maze literature.


Asunto(s)
Aprendizaje por Laberinto/fisiología , Memoria Espacial/fisiología , Navegación Espacial/fisiología , Animales , Señales (Psicología) , Masculino , Ratones , Ratones Noqueados , Receptor de Serotonina 5-HT1A/genética
13.
Neurobiol Dis ; 71: 81-94, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25088714

RESUMEN

Huntington's disease (HD) is a neurodegenerative disease caused by a tandem repeat mutation encoding an expanded polyglutamine tract. Our previous work showed that memory deficits in HD transgenic mice could be accelerated by increased levels of stress hormone, while memory in WT mice remained unaffected. HD patients experience higher levels of stress compared to the general population and symptoms of HD also include motor, cognitive, psychiatric, sexual and olfactory abnormalities, and an associated decline in activities of daily living. Therefore we investigated the impact of a robust stressor (i.e. restraint) on the onset and progression of a range of behavioral phenotypes in R6/1 transgenic HD mice. Restraint was administered for 1h daily from 6weeks of age and continued until R6/1 mice were clearly motor symptomatic at 14weeks of age. Serum corticosterone levels in both R6/1 and WT littermates were elevated immediately after the last restraint session and weight gain was suppressed in restrained animals throughout the treatment period. Motor coordination and locomotor activity were enhanced by chronic restraint in males, regardless of genotype. However, there was no effect of restraint on motor performances in female animals. At 8weeks of age, olfactory sensitivity was impaired by restraint in R6/1 HD female mice, but not in WT mice. In male R6/1 mice, the olfactory deficit was exacerbated by restraint and olfaction was also impaired in male WT mice. The development of deficits in saccharin preference, Y-maze memory, nest-building and sexually-motivated vocalizations was unaffected by chronic restraint in R6/1 and had little impact on such behavioral performances in WT animals. We provide evidence that chronic stress can negatively modulate specific endophenotypes in HD mice, while the same functions were affected to a lesser extent in WT mice. This vulnerability in HD animals seems to be sex-specific depending on the stress paradigm used. It is hoped that our work will stimulate clinical investigations into the effects of stress on both pre-symptomatic and symptomatic gene-positive members of HD families, and inform the development of new therapeutic approaches.


Asunto(s)
Enfermedad de Huntington/fisiopatología , Enfermedad de Huntington/rehabilitación , Estrés Psicológico/fisiopatología , Animales , Corticosterona/sangre , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Mutación/genética , Proteínas del Tejido Nervioso/genética , Desempeño Psicomotor/fisiología , Restricción Física , Factores Sexuales , Sacarosa/administración & dosificación , Factores de Tiempo
14.
Neurobiol Dis ; 69: 248-62, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24825316

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by a tandem repeat mutation in the huntingtin gene. Lifestyle factors, such as lack of activity may contribute to the variability in the age of disease onset. Therefore, better understanding of environmental modifiers may uncover potential therapeutic approaches to delay disease onset and progression. Recent data suggest that HD patients and transgenic mouse models show a dysregulated stress response. In this present study, we elevated stress hormone levels through oral corticosterone (CORT) treatment and assessed its impact on the development of motor impairment and cognitive deficits using the R6/1 transgenic mouse model of HD. We found that CORT consumption did not alter rotarod performance of R6/1 HD or wild-type (WT) littermates. However, the onset of hippocampal-dependent Y-maze deficits was accelerated in male R6/1 mice by 5days of CORT treatment, whereas short term memory of WT and female R6/1 mice was unaffected. We then further investigated the male HD susceptibility to CORT by measuring TrkB activation, BDNF and glucocorticoid receptor expression as well as the level of cell proliferation in the hippocampus. CORT treatment increased the levels of phosphorylated TrkB in male R6/1 mice only. There were no effects of CORT on hippocampal BDNF protein or mRNA levels; nor on expression of the glucocorticoid receptors in any group. Hippocampal cell proliferation was decreased in male R6/1 mice and this was further reduced in CORT-drinking male R6/1 mice. Female mice (WT and R6/1) appeared to be protected from the impacts of CORT treatment in all our hippocampal measures. Overall, our data demonstrate that treatment with corticosterone is able to modulate the onset of HD symptomatology. We present the first evidence of a male-specific vulnerability to stress impacting on the development of short-term memory deficits in HD. More generally, we found that female mice were protected from the detrimental effects of CORT treatment on a variety of hippocampus-based measures. Hippocampal plasticity and memory in HD may be more susceptible to the impacts of stress in a sex-dependent manner. We propose clinical investigations of stress as a key environmental modifier of HD symptom onset.


Asunto(s)
Corticosterona/metabolismo , Enfermedad de Huntington/fisiopatología , Trastornos de la Memoria/fisiopatología , Memoria a Corto Plazo/fisiología , Edad de Inicio , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones Transgénicos , Actividad Motora/fisiología , ARN Mensajero/metabolismo , Receptor trkB/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Caracteres Sexuales
15.
Neuropharmacology ; 244: 109801, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38040286

RESUMEN

BACKGROUND: The interplay between environmental stress and genetic factors is thought to play an important role in the pathogenesis and maintenance of obsessive-compulsive disorder (OCD). However, the relative contribution of these causative antecedents in the manifestation of cognitive inflexibility-a phenotype often seen in obsessive-compulsive (OC)- spectrum disorders-is not fully understood. METHOD: In this study, we treated mice with 50 mg/L corticosterone (CORT, a glucocorticoid stress hormone) in their drinking water during adolescence. In adulthood, we assessed anxiety-like behaviour and locomotor activity; along with operant-based discrimination and reversal learning. RU-24969, a selective serotonin receptor 5-HT1A/1B receptor agonist, was used as an acute pharmacological model of OC-like behaviour. RU-24969 (5 mg/kg) was administered prior to each reversal learning testing session. RESULTS: We found that acute treatment with 5 mg/kg RU-24969 induced stereotyped hyperlocomotion in vehicle- and CORT-treated mice. Furthermore, pre-treatment with CORT in adolescence produced subtle anxiety-like behaviour in adult mice, and also resulted in an impairment to late-stage discrimination learning and alterations to reversal learning. Finally, acute treatment with 5 mg/kg RU-24969 caused an impairment to early-stage reversal learning. CONCLUSION: Whilst we revealed dissociable detrimental effects of adolescent CORT treatment and acute 5-HT1A/1B receptor agonism on discrimination and reversal learning, respectively, we did not find evidence of additive deleterious effects of these two treatments. We therefore suggest that while disrupted serotonergic signalling is likely to be involved in the cognitive phenotype of OC-spectrum disorders, distinct neuropathological pathways may be at play in mediating the role of stress as an antecedent in OCD and related illnesses.


Asunto(s)
Trastorno Obsesivo Compulsivo , Serotonina , Ratones , Animales , Serotonina/farmacología , Agonistas de Receptores de Serotonina/uso terapéutico , Trastorno Obsesivo Compulsivo/tratamiento farmacológico , Inhibidores Selectivos de la Recaptación de Serotonina , Aprendizaje Inverso
16.
Neuropharmacology ; 246: 109837, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38184274

RESUMEN

BACKGROUND: Current antidepressants have limitations due to insufficient efficacy and delay before improvement in symptoms. Polymorphisms of the serotonin transporter (5-HTT) gene have been linked to depression (when combined with stressful life events) and altered response to selective serotonergic reuptake inhibitors. We have previously revealed the antidepressant-like properties of the iron chelator deferiprone in the 5-HTT knock-out (KO) mouse model of depression. Furthermore, deferiprone was found to alter neural activity in the prefrontal cortex of both wild-type (WT) and 5-HTT KO mice. METHODS: In the current study, we examined the molecular effects of acute deferiprone treatment in the prefrontal cortex of both genotypes via phosphoproteomics analysis. RESULTS: In WT mice treated with deferiprone, there were 22 differentially expressed phosphosites, with gene ontology analysis implicating cytoskeletal proteins. In 5-HTT KO mice treated with deferiprone, we found 33 differentially expressed phosphosites. Gene ontology analyses revealed phosphoproteins that were predominantly involved in synaptic and glutamatergic signalling. In a drug-naïve cohort (without deferiprone administration), the analysis revealed 21 differentially expressed phosphosites in 5-HTT KO compared to WT mice. We confirmed the deferiprone-induced increase in tyrosine hydroxylase serine 40 residue phosphorylation (pTH-Ser40) (initially revealed in our phosphoproteomics study) by Western blot analysis, with deferiprone increasing pTH-Ser40 expression in WT and 5-HTT KO mice. CONCLUSION: As glutamatergic and synaptic signalling are dysfunctional in 5-HTT KO mice (and are the target of fast-acting antidepressant drugs such as ketamine), these molecular effects may underpin deferiprone's antidepressant-like properties. Furthermore, dopaminergic signalling may also be involved in deferiprone's antidepressant-like properties.


Asunto(s)
Antidepresivos , Hierro , Humanos , Animales , Ratones , Deferiprona , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Transducción de Señal , Quelantes del Hierro/farmacología , Ratones Noqueados
17.
J Physiol ; 591(1): 41-55, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23045340

RESUMEN

Psychiatric disorders such as depression and anxiety are reported in patients with Huntington's disease (HD). Recent studies suggest beneficial effects of environmental enrichment (EE) on HD progression possibly through the serotonergic system. We investigated the potential effectiveness of EE in correcting the affective-like phenotype of female R6/1 HD mice. In addition to a behavioural battery of tests assessing depression and anxiety-related endophenotypes, we recorded physiological measures, including body temperature regulation and defecation rate as indices of stress reactivity. Finally, following identification of changes in serotonin (5-HT) receptor gene expression we measured the function of 5-HT(1A) auto- and hetero-receptors. We found that 8-week-old female HD mice exhibited higher immobility time in the forced swimming test and a decreased preference for saccharin solution. EE did not correct those depressive-like behaviours but reduced anxiety-related measures in unconditioned approach/avoidance conflict situations. Defecation rate in a large open field and change in temperature during exposure to the tail suspension test were both enhanced in HD compared to wild-type animals. Despite the enhanced hypothermic response to the 5-HT(1A) receptor agonist 8-OH-DPAT exhibited by HD mice, we found a reduction in 5-HT(1A) receptor-mediated stimulation of [(35)S]GTP-γ-S binding in the dorsal raphe nucleus and the hippocampus of HD animals. EE did not change 5-HT(1A) receptor function. Our data suggest that early EE has beneficial effects on the anxiety-like, but not on depression-like, behaviours in HD. This is the first evidence that these affective endophenotypes can be dissociated via this form of environmental stimulation. As 5-HT(1A) receptor dysfunction was not affected by EE, this receptor is unlikely to underlie the anxiety-related phenotype of HD. However, the specific regulatory role of the 5-HT(1A) autoreceptor in mediating depressive-like behaviour in HD remains to be elucidated. Interestingly, by comparing in vivo and in vitro results, our findings suggest that 8-OH-DPAT-induced hypothermia could be mediated by other targets besides the 5-HT(1A) autoreceptor, including hippocampal 5-HT(7) receptors.


Asunto(s)
Ambiente , Enfermedad de Huntington/fisiopatología , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Animales , Ansiedad/fisiopatología , Conducta Animal/fisiología , Depresión/fisiopatología , Modelos Animales de Enfermedad , Emociones/fisiología , Femenino , Hipotermia/inducido químicamente , Ratones , Ratones Transgénicos , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Estrés Psicológico
18.
Neurobiol Dis ; 57: 12-27, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22525570

RESUMEN

Mental illness is the leading cause of disability worldwide. We are only just beginning to reveal and comprehend the complex interaction that exists between the genetic makeup of an organism and the potential modifying effect of the environment in which it lives, and how this translates into mediating susceptibility to neurological and psychiatric conditions. The capacity to address this issue experimentally has been facilitated by the availability of rodent models which allow the precise manipulation of genetic and environmental factors. In this review, we discuss the valuable nature of animal models in furthering our understanding of the relationship between genetic and environmental factors in affective illnesses, such as anxiety and depressive disorders. We first highlight the behavioral impairments exhibited by genetically targeted animal models of affective disorders, and then provide a discussion of the underlying neurobiology, focusing on animal models that involve exposure to stress. This is followed by a review of recent studies that report of beneficial effects of environmental manipulations such as environmental enrichment and enhanced physical activity and discuss the likely mechanisms that mediate those benefits.


Asunto(s)
Modelos Animales de Enfermedad , Interacción Gen-Ambiente , Trastornos del Humor/genética , Animales , Sistema Hipotálamo-Hipofisario/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Trastornos del Humor/metabolismo , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Neurotransmisores/genética , Neurotransmisores/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo
19.
Eur J Neurosci ; 37(11): 1803-10, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23551162

RESUMEN

Withdrawal from a chronic period of alcohol consumption is commonly associated with the manifestation of depression, potentially exerting a significant influence on treatment prospects and increasing the likelihood of relapse. Better therapeutic strategies need to be developed to assist with rehabilitation. Here, we report the detection of depression-related behaviours in a mouse model of 6-week free-choice ethanol (10%, v/v) consumption followed by 2-week abstinence. Mice abstinent from alcohol showed increased immobility time on the forced-swim test, reduced saccharin consumption and increased latency to feed in the novelty-suppressed feeding test. By comparison, there was no significant effect on anxiety-related behaviours as determined by testing on the light-dark box and elevated plus maze. We found that the provision of running-wheels through the duration of abstinence attenuated depressive behaviour in the forced-swim and novelty-suppressed feeding tests, and increased saccharin consumption. Given the link between withdrawal from addictive substances and depression, this model will be useful for the study of the pathophysiology underlying alcohol-related depression. The findings of this study establish an interaction between physical activity and the development of behavioural changes following cessation of alcohol consumption that could have implications for the development of rehabilitative therapies.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Depresión/terapia , Etanol/toxicidad , Esfuerzo Físico , Animales , Ansiedad/etiología , Ansiedad/terapia , Depresión/etiología , Depresión/fisiopatología , Femenino , Ratones , Ratones Endogámicos C57BL , Síndrome de Abstinencia a Sustancias/complicaciones , Síndrome de Abstinencia a Sustancias/fisiopatología
20.
Neuropharmacology ; 239: 109689, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37597609

RESUMEN

Obsessive-compulsive disorder (OCD) is characterised by excessive intrusive thoughts that may cause an individual to engage in compulsive behaviours. Frontline pharmacological treatments (i.e., selective serotonin reuptake inhibitors (SSRIs)) leave approximately 40% of patients refractory to treatment. To investigate the possibility of novel pharmacological therapies for OCD, as well as the potential mechanisms underlying its pathology, we used the Sapap3 knockout (KO) mouse model of OCD, which exhibits increased anxiety and compulsive grooming behaviours. Firstly, we investigated whether administration of the NMDA receptor (NMDAR) antagonist ketamine (30 mg/kg), would reduce anxiety and grooming behaviour in Sapap3 KO mice. Anxiety-like behaviour was measured via time spent in the light component of the light-dark box test. Grooming behaviour was recorded and scored in freely moving mice. In line with previous works conducted in older animals (i.e. typically between 6 and 9 months of age), we confirmed here that Sapap3 KO mice exhibit an anxious, compulsive grooming, hypolocomotive and reduced body weight phenotype even at a younger age (i.e., 2-3 months of age). However, we found that acute administration of ketamine did not cause a reduction in anxiety or grooming behaviour. We then investigated in vivo glutamatergic function via the administration of a different NMDAR antagonist, MK-801 (0.25 mg/kg), prior to locomotion and prepulse inhibition assays. We found evidence of altered functional NMDAR activity, as well as sexually dimorphic prepulse inhibition, a measure of sensorimotor gating, in Sapap3 KO mice. These results are suggestive of in vivo glutamatergic dysfunction and their functional consequences, enabling future research to further investigate novel treatments for OCD.


Asunto(s)
Maleato de Dizocilpina , Ketamina , Animales , Ratones , Maleato de Dizocilpina/farmacología , Ketamina/farmacología , Receptores de N-Metil-D-Aspartato , Conducta Compulsiva , Inhibición Prepulso , Proteínas del Tejido Nervioso/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA