RESUMEN
A key challenge for clinical application of induced pluripotent stem cells (iPSC) to accurately model and treat human pathologies depends on developing a method to generate genetically stable cells to reduce long-term risks of cell transplant therapy. Here, we hypothesized that CYCLIN D1 repairs DNA by highly efficient homologous recombination (HR) during reprogramming to iPSC that reduces genetic instability and threat of neoplastic growth. We adopted a synthetic mRNA transfection method using clinically compatible conditions with CYCLIN D1 plus base factors (OCT3/4, SOX2, KLF4, LIN28) and compared with methods that use C-MYC. We demonstrate that CYCLIN D1 made iPSC have (a) lower multitelomeric signal, (b) reduced double-strand DNA breaks, (c) correct nuclear localization of RAD51 protein expression, and (d) reduced single-nucleotide polymorphism (SNP) changes per chromosome, compared with the classical reprogramming method using C-MYC. CYCLIN D1 iPSC have reduced teratoma Ki67 cell growth kinetics and derived neural stem cells successfully engraft in a hostile spinal cord injury (SCI) microenvironment with efficient survival, differentiation. We demonstrate that CYCLIN D1 promotes double-stranded DNA damage repair predominantly through HR during cell reprogramming to efficiently produce iPSC. CYCLIN D1 reduces general cell stress associated with significantly lower SIRT1 gene expression and can rescue Sirt1 null mouse cell reprogramming. In conclusion, we show synthetic mRNA transfection of CYCLIN D1 repairs DNA during reprogramming resulting in significantly improved genetically stable footprint in human iPSC, enabling a new cell reprogramming method for more accurate and reliable generation of human iPSC for disease modeling and future clinical applications.
Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular , Reprogramación Celular/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Reparación del ADN/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Schizophrenia (SCZ) and bipolar disorder (BIP) are severe mental disorders with a considerable disease burden worldwide due to early age of onset, chronicity, and lack of efficient treatments or prevention strategies. Whilst our current knowledge is that SCZ and BIP are highly heritable and share common pathophysiological mechanisms associated with cellular signaling, neurotransmission, energy metabolism, and neuroinflammation, the development of novel therapies has been hampered by the unavailability of appropriate models to identify novel targetable pathomechanisms. Recent data suggest that neuron-glia interactions are disturbed in SCZ and BIP, and are modulated by estrogen (E2). However, most of the knowledge we have so far on the neuromodulatory effects of E2 came from studies on animal models and human cell lines, and may not accurately reflect many processes occurring exclusively in the human brain. Thus, here we highlight the advantages of using induced pluripotent stem cell (iPSC) models to revisit studies of mechanisms underlying beneficial effects of E2 in human brain cells. A better understanding of these mechanisms opens the opportunity to identify putative targets of novel therapeutic agents for SCZ and BIP. In this review, we first summarize the literature on the molecular mechanisms involved in SCZ and BIP pathology and the beneficial effects of E2 on neuron-glia interactions. Then, we briefly present the most recent developments in the iPSC field, emphasizing the potential of using patient-derived iPSCs as more relevant models to study the effects of E2 on neuron-glia interactions.
Asunto(s)
Trastorno Bipolar/patología , Comunicación Celular , Estrógenos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Neuroglía/metabolismo , Neuronas/metabolismo , Esquizofrenia/patología , Animales , Trastorno Bipolar/genética , Trastorno Bipolar/fisiopatología , Humanos , Esquizofrenia/genética , Esquizofrenia/fisiopatologíaRESUMEN
Reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined pluripotency and self-renewal factors has taken stem cell technology to the forefront of regenerative medicine. However, a number of challenges remain in the field including efficient protocols and the threat of cancer. Reprogramming of plant somatic cells to plant embryonic stem cells using a combination of two plant hormones was discovered in 1957 and has been a routine university laboratory practical for over 30 years. The plant hormones responsible for cell reprogramming to pluripotency, indole-3-acetic acid (IAA) and isopentenyl adenosine (IPA), are present in human cells, leading to the exciting possibility that plant hormones might reprogram mammalian cells without genetic factors. We found that plant hormones on their own could not reprogram mammalian cells but increase the efficiency of the early formation of iPS cells combined with three defined genetic factors during the first 3 weeks of reprogramming by accelerating the cell cycle and regulating pluripotency genes. Moreover, the cytokinin IPA, a known human anticancer agent, reduced the threat of cancer of iPS cell in vitro by regulating key cancer and stem cell-related genes, most notably c-Myc and Igf-1. In conclusion, the plant hormones, auxin and cytokinin, are new small chemicals useful for enhancing early reprogramming efficiency of mammalian cells and reducing the threat of cancer from iPS cells. These findings suggest a novel role for plant hormones in the biology of mammalian cell plasticity.