Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 303(11): L967-77, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23023971

RESUMEN

Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 "healer" phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Células Madre Mesenquimatosas/fisiología , Comunicación Paracrina , Lesión Pulmonar Aguda/patología , Animales , Antígenos de Diferenciación/metabolismo , Líquido del Lavado Bronquioalveolar , Permeabilidad Capilar , Diferenciación Celular , Células Cultivadas , Análisis por Conglomerados , Medios de Cultivo Condicionados , Factor I del Crecimiento Similar a la Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Lipopolisacáridos/farmacología , Pulmón/irrigación sanguínea , Pulmón/inmunología , Pulmón/patología , Activación de Macrófagos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/fisiología , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/patología , Pérdida de Peso
2.
Pediatr Res ; 68(6): 519-25, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20805789

RESUMEN

Bronchopulmonary dysplasia (BPD) is characterized by arrested alveolar development and complicated by pulmonary hypertension (PH). NO promotes alveolar growth. Inhaled NO (iNO) ameliorates the BPD phenotype in experimental models and in some premature infants. Arginosuccinate synthetase (ASS) and arginosuccinate lyase (ASL) convert L-citrulline to L-arginine; L-citrulline is regenerated during NO synthesis from L-arginine. Plasma levels of these NO precursors are low in PH. We hypothesized that L-citrulline prevents experimental O2-induced BPD in newborn rats. Rat pups were assigned from birth through postnatal day (P) 14 to room air (RA), RA + L-citrulline, 95% hyperoxia (BPD model), and 95%O2 + L-citrulline. Rat pups exposed to hyperoxia had fewer and enlarged air spaces and decreased capillary density, mimicking human BPD. This was associated with decreased plasma L-arginine and L-citrulline concentrations on P7. L-citrulline treatment significantly increased plasma L-arginine and L-citrulline concentrations and increased ASL protein expression in hyperoxia. L-citrulline preserved alveolar and vascular growth in O2-exposed pups and decreased pulmonary arterial medial wall thickness (MWT) and right ventricular hypertrophy (RVH). Increased lung arginase (ARG) activity in O2-exposed pups was reversed by L-citrulline treatment. L-citrulline supplementation prevents hyperoxia-induced lung injury and PH in newborn rats. L-citrulline may represent a novel therapeutic alternative to iNO for prevention of BPD.


Asunto(s)
Animales Recién Nacidos , Displasia Broncopulmonar/prevención & control , Displasia Broncopulmonar/fisiopatología , Citrulina/uso terapéutico , Hipertensión Pulmonar/prevención & control , Alveolos Pulmonares/crecimiento & desarrollo , Animales , Arginina/sangre , Displasia Broncopulmonar/sangre , Displasia Broncopulmonar/patología , Citrulina/sangre , Citrulina/farmacología , Modelos Animales de Enfermedad , Humanos , Hipertensión Pulmonar/fisiopatología , Recién Nacido , Pulmón/patología , Pulmón/fisiopatología , Lesión Pulmonar , Óxido Nítrico/sangre , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/fisiopatología , Ratas
3.
Am J Respir Crit Care Med ; 180(11): 1131-42, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19713449

RESUMEN

RATIONALE: Bronchopulmonary dysplasia (BPD) and emphysema are characterized by arrested alveolar development or loss of alveoli; both are significant global health problems and currently lack effective therapy. Bone marrow-derived mesenchymal stem cells (BMSCs) prevent adult lung injury, but their therapeutic potential in neonatal lung disease is unknown. OBJECTIVES: We hypothesized that intratracheal delivery of BMSCs would prevent alveolar destruction in experimental BPD. METHODS: In vitro, BMSC differentiation and migration were assessed using co-culture assays and a modified Boyden chamber. In vivo, the therapeutic potential of BMSCs was assessed in a chronic hyperoxia-induced model of BPD in newborn rats. MEASUREMENTS AND MAIN RESULTS: In vitro, BMSCs developed immunophenotypic and ultrastructural characteristics of type II alveolar epithelial cells (AEC2) (surfactant protein C expression and lamellar bodies) when co-cultured with lung tissue, but not with culture medium alone or liver. Migration assays revealed preferential attraction of BMSCs toward oxygen-damaged lung versus normal lung. In vivo, chronic hyperoxia in newborn rats led to air space enlargement and loss of lung capillaries, and this was associated with a decrease in circulating and resident lung BMSCs. Intratracheal delivery of BMSCs on Postnatal Day 4 improved survival and exercise tolerance while attenuating alveolar and lung vascular injury and pulmonary hypertension. Engrafted BMSCs coexpressed the AEC2-specific marker surfactant protein C. However, engraftment was disproportionately low for cell replacement to account for the therapeutic benefit, suggesting a paracrine-mediated mechanism. In vitro, BMSC-derived conditioned medium prevented O(2)-induced AEC2 apoptosis, accelerated AEC2 wound healing, and enhanced endothelial cord formation. CONCLUSIONS: BMSCs prevent arrested alveolar and vascular growth in part through paracrine activity. Stem cell-based therapies may offer new therapeutic avenues for lung diseases that currently lack efficient treatments.


Asunto(s)
Lesión Pulmonar/prevención & control , Células Madre Mesenquimatosas , Alveolos Pulmonares/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Médula Ósea , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Tolerancia al Ejercicio , Hiperoxia , Hipertensión Pulmonar/prevención & control , Alveolos Pulmonares/ultraestructura , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA