Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biol Res ; 57(1): 31, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783330

RESUMEN

BACKGROUND: Members of the ß-subfamily of connexins contain an intracellular pocket surrounded by amino acid residues from the four transmembrane helices. The presence of this pocket has not previously been investigated in members of the α-, γ-, δ-, and ε-subfamilies. We studied connexin50 (Cx50) as a representative of the α-subfamily, because its structure has been determined and mutations of Cx50 are among the most common genetic causes of congenital cataracts. METHODS: To investigate the presence and function of the intracellular pocket in Cx50 we used molecular dynamics simulation, site-directed mutagenesis, gap junction tracer intercellular transfer, and hemichannel activity detected by electrophysiology and by permeation of charged molecules. RESULTS: Employing molecular dynamics, we determined the presence of the intracellular pocket in Cx50 hemichannels and identified the amino acids participating in its formation. We utilized site-directed mutagenesis to alter a salt-bridge interaction that supports the intracellular pocket and occurs between two residues highly conserved in the connexin family, R33 and E162. Substitution of opposite charges at either position decreased formation of gap junctional plaques and cell-cell communication and modestly reduced hemichannel currents. Simultaneous charge reversal at these positions produced plaque-forming non-functional gap junction channels with highly active hemichannels. CONCLUSIONS: These results show that interactions within the intracellular pocket influence both gap junction channel and hemichannel functions. Disruption of these interactions may be responsible for diseases associated with mutations at these positions.


Asunto(s)
Conexinas , Uniones Comunicantes , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conexinas/metabolismo , Conexinas/genética , Conexinas/química , Uniones Comunicantes/metabolismo , Uniones Comunicantes/fisiología , Humanos , Animales , Mutación , Comunicación Celular/fisiología
2.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928430

RESUMEN

Arsenic compounds have been used as therapeutic alternatives for several diseases including cancer. In the following work, we obtained arsenic nanoparticles (AsNPs) produced by an anaerobic bacterium from the Salar de Ascotán, in northern Chile, and evaluated their effects on the human oral squamous carcinoma cell line OECM-1. Resazurin reduction assays were carried out on these cells using 1-100 µM of AsNPs, finding a concentration-dependent reduction in cell viability that was not observed for the non-tumoral gastric mucosa-derived cell line GES-1. To establish if these effects were associated with apoptosis induction, markers like Bcl2, Bax, and cleaved caspase 3 were analyzed via Western blot, executor caspases 3/7 via luminometry, and DNA fragmentation was analyzed by TUNEL assay, using 100 µM cisplatin as a positive control. OECM-1 cells treated with AsNPs showed an induction of both extrinsic and intrinsic apoptotic pathways, which can be explained by a significant decrease in P-Akt/Akt and P-ERK/ERK relative protein ratios, and an increase in both PTEN and p53 mRNA levels and Bit-1 relative protein levels. These results suggest a prospective mechanism of action for AsNPs that involves a potential interaction with extracellular matrix (ECM) components that reduces cell attachment and subsequently triggers anoikis, an anchorage-dependent type of apoptosis.


Asunto(s)
Anoicis , Apoptosis , Arsénico , Nanopartículas , Humanos , Anoicis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Nanopartículas/química , Arsénico/farmacología , Arsénico/toxicidad , Supervivencia Celular/efectos de los fármacos , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Caspasa 3/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
3.
Cell Mol Neurobiol ; 43(6): 2801-2813, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36680690

RESUMEN

Vagus nerve innervates several organs including the heart, stomach, and pancreas among others. Somas of sensory neurons that project through the vagal nerve are located in the nodose ganglion. The presence of purinergic receptors has been reported in neurons and satellite glial cells in several sensory ganglia. In the nodose ganglion, calcium depletion-induced increases in neuron activity can be partly reversed by P2X7 blockers applied directly into the ganglion. The later suggest a possible role of P2X7 receptors in the modulation of neuronal activity within this sensory ganglion. We aimed to characterize the response to P2X7 activation in nodose ganglion neurons under physiological conditions. Using an ex vivo preparation for electrophysiological recordings of the neural discharges of nodose ganglion neurons, we found that treatments with ATP induce transient neuronal activity increases. Also, we found a concentration-dependent increase in neural activity in response to Bz-ATP (ED50 = 0.62 mM, a selective P2X7 receptor agonist), with a clear desensitization pattern when applied every ~ 30 s. Electrophysiological recordings from isolated nodose ganglion neurons reveal no differences in the responses to Bz-ATP and ATP. Finally, we showed that the P2X7 receptor was expressed in the rat nodose ganglion, both in neurons and satellite glial cells. Additionally, a P2X7 receptor negative allosteric modulator decreased the duration of Bz-ATP-induced maximal responses without affecting their amplitude. Our results show the presence of functional P2X7 receptors under physiological conditions within the nodose ganglion of the rat, and suggest that ATP modulation of nodose ganglion activity may be in part mediated by the activation of P2X7 receptors.


Asunto(s)
Ganglio Nudoso , Receptores Purinérgicos P2X7 , Ratas , Animales , Ganglio Nudoso/fisiología , Nervio Vago/fisiología , Adenosina Trifosfato/farmacología , Células Receptoras Sensoriales
4.
Molecules ; 28(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37959657

RESUMEN

pH regulation is essential to allow normal cell function, and their imbalance is associated with different pathologic situations, including cancer. In this study, we present the synthesis of 2-(((2-aminoethyl)imino)methyl)phenol (HL1) and the iron (III) complex (Fe(L1)2Br, (C1)), confirmed by X-ray diffraction analysis. The absorption and emission properties of complex C1 were assessed in the presence and absence of different physiologically relevant analytes, finding a fluorescent turn-on when OH- was added. So, we determined the limit of detection (LOD = 3.97 × 10-9 M), stoichiometry (1:1), and association constant (Kas = 5.86 × 103 M-1). Using DFT calculations, we proposed a spontaneous decomposition mechanism for C1. After characterization, complex C1 was evaluated as an intracellular pH chemosensor on the human primary gastric adenocarcinoma (AGS) and non-tumoral gastric epithelia (GES-1) cell lines, finding fluorescent signal activation in the latter when compared to AGS cells due to the lower intracellular pH of AGS cells caused by the increased metabolic rate. However, when complex C1 was used on metastatic cancer cell lines (MKN-45 and MKN-74), a fluorescent turn-on was observed in both cell lines because the intracellular lactate amount increased. Our results could provide insights about the application of complex C1 as a metabolic probe to be used in cancer cell imaging.


Asunto(s)
Colorantes Fluorescentes , Hierro , Humanos , Hierro/análisis , Colorantes Fluorescentes/química , Línea Celular , Concentración de Iones de Hidrógeno , Espectrometría de Fluorescencia/métodos
5.
Arch Pharm (Weinheim) ; 355(7): e2200042, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35435270

RESUMEN

Neuroblastoma is one of the most frequent types of cancer found in infants, and traditional chemotherapy has limited efficacy against this pathology. Thus, the development of new compounds with higher activity and selectivity than traditional drugs is a current challenge in medicinal chemistry research. In this study, we report the synthesis of 21 chalcones with antiproliferative activity and selectivity against the neuroblastoma cell line SH-SY5Y. Then, we developed three-dimensional quantitative structure-activity relationship models (comparative molecular field analysis and comparative molecular similarity index analysis) with high-quality statistical values (q2 > 0.7; r2 > 0.8; r2 pred > 0.7), using IC50 and selectivity index (SI) data as dependent variables. With the information derived from these theoretical models, we designed and synthesized 16 new molecules to prove their consistency, finding good antiproliferative activity against SH-SY5Y cells on these derivatives, with three of them showing higher SI than the referential drugs 5-fluorouracil and cisplatin, displaying also a proapoptotic effect comparable to these drugs, as proven by measuring their effects on executor caspases 3/7 activity induction, Bcl-2/Bax messenger RNA levels alteration, and DNA fragmentation promotion.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Neuroblastoma , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Chalcona/farmacología , Chalconas/farmacología , Humanos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Relación Estructura-Actividad Cuantitativa
6.
Int J Mol Sci ; 23(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35628201

RESUMEN

Fatty acids (FAs) are essential components of the central nervous system (CNS), where they exert multiple roles in health and disease. Among the FAs, docosahexaenoic acid (DHA) has been widely recognized as a key molecule for neuronal function and cell signaling. Despite its relevance, the molecular pathways underlying the beneficial effects of DHA on the cells of the CNS are still unclear. Here, we summarize and discuss the molecular mechanisms underlying the actions of DHA in neural cells with a special focus on processes of survival, morphological development, and synaptic maturation. In addition, we examine the evidence supporting a potential therapeutic role of DHA against CNS tumor diseases and tumorigenesis. The current results suggest that DHA exerts its actions on neural cells mainly through the modulation of signaling cascades involving the activation of diverse types of receptors. In addition, we found evidence connecting brain DHA and ω-3 PUFA levels with CNS diseases, such as depression, autism spectrum disorders, obesity, and neurodegenerative diseases. In the context of cancer, the existing data have shown that DHA exerts positive actions as a coadjuvant in antitumoral therapy. Although many questions in the field remain only partially resolved, we hope that future research may soon define specific pathways and receptor systems involved in the beneficial effects of DHA in cells of the CNS, opening new avenues for innovative therapeutic strategies for CNS diseases.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Ácidos Grasos Omega-3 , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Humanos
7.
PLoS One ; 19(6): e0304062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870128

RESUMEN

ATP is actively maintained at high concentrations in cancerous tissues, where it promotes a malignant phenotype through P2 receptors. In this study, we first evaluated the effect of extracellular ATP depletion with apyrase in SKOV-3, a cell line derived from metastatic ovarian carcinoma. We observed a decrease in cell migration and an increase in transepithelial electrical resistance and cell markers, suggesting a role in maintaining a mesenchymal phenotype. To identify the P2 receptor that mediated the effects of ATP, we compared the transcript levels of some P2 receptors and found that P2RX7 is three-fold higher in SKOV-3 cells than in a healthy cell line, namely HOSE6-3 (from human ovarian surface epithelium). Through bioinformatic analysis, we identified a higher expression of the P2RX7 transcript in metastatic tissues than in primary tumors; thus, P2X7 seems to be a promising effector for the malignant phenotype. Subsequently, we demonstrated the presence and functionality of the P2X7 receptor in SKOV-3 cells and showed through pharmacological approaches that its activity promotes cell migration and contributes to maintaining a mesenchymal phenotype. P2X7 activation using BzATP increased cell migration and abolished E-cadherin expression. On the other hand, a series of P2X7 receptor antagonists (A438079, BBG and OxATP) decreased cell migration. We used a CRISPR-based knock-out system directed to P2RX7. According to the results of our wound-healing assay, SKOV3-P2X7KO cells lacked receptor-mediated calcium mobilization and decreased migration. Altogether, these data let us propose that P2X7 receptor is a regulator for cancer cell migration and thus a potential drug target.


Asunto(s)
Adenosina Trifosfato , Movimiento Celular , Neoplasias Ováricas , Receptores Purinérgicos P2X7 , Humanos , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Femenino , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica
8.
Microorganisms ; 10(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893541

RESUMEN

Nowadays, antimicrobial resistance is a serious concern associated with the reduced efficacy of traditional antibiotics and an increased health burden worldwide. In response to this challenge, the scientific community is developing a new generation of antibacterial molecules. Contributing to this effort, and inspired by the resveratrol structure, five new resveratrol-dimers (9a−9e) and one resveratrol-monomer (10a) were synthetized using 2,5-dibromo-1,4-diaminobenzene (8) as the core compound for Schiff base bridge conformation. These compounds were evaluated in vitro against pathogenic clinical isolates of Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus sp., and Listeria monocytogenes. Antibacterial activity measurements of resveratrol-Schiff base derivatives (9a−9e) and their precursors (4−8) showed high selectivity against Listeria monocytogenes, being 2.5 and 13.7 times more potent than chloramphenicol, while resveratrol showed an EC50 > 320 µg/mL on the same model. Moreover, a prospective mechanism of action for these compounds against L. monocytogenes strains was proposed using molecular docking analysis, finding a plausible inhibition of internalin C (InlC), a surface protein relevant in bacteria−host interaction. These results would allow for the future development of new molecules for listeriosis treatment based on compound 8.

9.
Nat Prod Res ; 36(17): 4410-4416, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34583595

RESUMEN

Cancer is the second death cause worldwide, with breast and colon cancer among the most prevalent types. Traditional treatment strategies have several side effects that inspire the development of novel anticancer agents derived from natural sources, like chalcone derivatives. For this investigation, twenty-three chalcones (4a-w) were synthesized and evaluated as antiproliferative agents against MCF-7 and Caco-2 cells, finding three and two compounds with similar or higher antiproliferative activity than daunorubicin, while only two chalcones showed better selectivity indexes than daunorubicin on MCF-7. From these results, we developed good-performance QSAR models (r > 0.850, q2>0.650), finding several structural features that could modify chalcone activity and selectivity. According to these models, chalcones 4w and 4t have high potency and selectivity against Caco-2 and MCF-7, respectively, which make them attractive candidates for hit-to-lead development of ROS-independent pro apoptotic agents.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Células CACO-2 , Proliferación Celular , Chalcona/farmacología , Chalconas/química , Chalconas/farmacología , Daunorrubicina/farmacología , Humanos , Células MCF-7 , Estructura Molecular , Relación Estructura-Actividad
10.
Pharmaceutics ; 13(8)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34452195

RESUMEN

Gastric cancer (GC) is a major health concern worldwide, presenting a complex pathophysiology that has hindered many therapeutic efforts so far. In this context, purinergic signaling emerges as a promising pathway for intervention due to its known role in cancer cell proliferation and migration. In this work, we explored in more detail the role of purinergic signaling in GC with several experimental approaches. First, we measured extracellular ATP concentrations on GC-derived cell lines (AGS, MKN-45, and MKN-74), finding higher levels of extracellular ATP than those obtained for the non-tumoral gastric cell line GES-1. Next, we established the P2Y2 and P2X4 receptors (P2Y2R and P2X4R) expression profile on these cells and evaluated their role on cell proliferation and migration after applying overexpression and knockdown strategies. In general, a P2Y2R overexpression and P2X4R downregulation pattern were observed on GC cell lines, and when these patterns were modified, concomitant changes in cell viability were observed. These modifications on gene expression also modified transepithelial electrical resistance (TEER), showing that higher P2Y2R levels decreased TEER, and high P2X4R expression had the opposite effect, suggesting that P2Y2R and P2X4R activation could promote and suppress epithelial-mesenchymal transition (EMT), respectively. These effects were confirmed after treating AGS cells with UTP, a P2Y2R-agonist that modified the expression patterns towards mesenchymal markers. To further characterize the effects of P2Y2R activation on EMT, we used cDNA microarrays and observed that UTP induced important transcriptional changes on several cell processes like cell proliferation induction, apoptosis inhibition, cell differentiation induction, and cell adhesion reduction. These results suggest that purinergic signaling plays a complex role in GC pathophysiology, and changes in purinergic balance can trigger tumorigenesis in non-tumoral gastric cells.

11.
Eur J Pharmacol ; 896: 173910, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33508285

RESUMEN

Despite current achievements and innovations in cancer treatment, conventional chemotherapy has several limitations, such as unsatisfactory long-term survival, cancer drug resistance and toxicity against non-tumoral cells. In the search for safer therapeutic alternatives, docosahexaenoic acid (DHA) has shown promising effects inhibiting tumor growth without significant side effects in several types of cancer, but in gastric cancer (GC) its effects have not been completely described. In this study, we characterized the effects of DHA in GC using in vivo and in vitro models. Among all of the evaluated Ω-3 and Ω-6 fatty acids, DHA showed the highest antiproliferative potency and selectivity against the GC-derived cell line AGS. 10-100 µM DHA decreased AGS cell viability in a concentration-dependent manner but had no effect on non-tumoral GES-1 cells. To evaluate if the effects of DHA were due to apoptosis induction, cells were stained with Annexin V-PI, observing that 75 and 100 µM DHA increased apoptosis in AGS, but not in GES-1 cells. Additionally, levels of several proapoptotic and antiapoptotic regulators were assessed by qPCR, western blot and activity assays, showing similar results. In order to evaluate DHA efficacy in vivo, xenografts in an immunodeficient mouse model (BALB/cNOD-SCID) were used. In these experiments, DHA treatment for six weeks consistently reduced subcutaneous tumor size, ascitic fluid volume and liver metastasis. In summary, we found that DHA has a selective antiproliferative effect on GC, being this effect driven by apoptosis induction. Our investigation provides promising features for DHA as potential therapeutic agent in GC.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Front Pharmacol ; 10: 612, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31249523

RESUMEN

Gastric cancer (GC) is the one of the most prevalent cancers and one of the leading causes of cancer-induced deaths. Previously, we found that the expression of purinergic P2Y2 receptor (P2Y2R) is increased in GC samples as compared to adjacent healthy mucosa taken from GC-diagnosed patients. In this work, we studied in detail purinergic signaling in the gastric adenocarcinoma-derived cell lines: AGS, MKN-45, and MKN-74, and compared them to a nontumoral epithelial cell line: GES-1. In GC-derived cells, we detected the expression of several purinergic receptors, and found important differences as compared to GES-1 cells. Functional studies revealed a strong contribution of P2Y2Rs in intracellular calcium increases, elicited by adenosine-triphosphate (ATP), uridine-triphosphate (UTP), and the P2Y2R agonist MRS2768. Responses were preserved in the absence of extracellular calcium and inhibited by P2Y2R antagonists. In GES-1 cells, ATP and UTP induced similar responses and the combination of P2X and P2Y receptor antagonists was able to block them. Proliferation studies showed that ATP regulates AGS and MKN-74 cells in a biphasic manner, increasing cell proliferation at 10-100 µM, but inhibiting at 300 µM ATP. On the other hand, 1-300 µM UTP, a P2Y2R agonist, increased concentration-dependent cell proliferation. The effects of UTP and ATP were prevented by both wide-range and specific purinergic antagonists. In contrast, in GES-1 cells ATP only decreased cell proliferation in a concentration-dependent manner, and UTP had no effect. Notably, the isolated application of purinergic antagonists was sufficient to change the basal proliferation of AGS cells, indicating that nucleotides released by the cells can act as paracrine/autocrine signals. Finally, in tumor-derived biopsies, we found an increase of P2Y2R and a decrease in P2X4R expression; however, we found high variability between seven different biopsies and their respective adjacent healthy gastric mucosa. Even so, we found a correlation between the expression levels of P2Y2R and P2X4R and survival rates of GC patients. Taken together, these results demonstrate the involvement of different purinergic receptors and signaling in GC, and the pattern of expression changes in tumoral cells, and this change likely directs ATP and nucleotide signaling from antiproliferative effects in healthy tissues to proliferative effects in cancer.

14.
Mater Sci Eng C Mater Biol Appl ; 79: 821-830, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28629085

RESUMEN

Biologically active biomaterials as biopolymers and hydrogels have been used in medical applications providing favorable results in tissue engineering. In this research, a wound dressing device was designed by integration of an autologous clot hydrogel carrying mesenchymal stem-cells onto a biopolymeric scaffold. This hybrid biomaterial was tested in-vitro and in-vivo, and used in a human clinical case. The biopolymeric scaffold was made with gelatin, chitosan and hyaluronic acid, using a freeze-drying method. The scaffold was a porous material which was designed evaluating both physical properties (glass transition, melting temperature and pore size) and biological properties (cell viability and fibronectin expression). Two types of chitosan (120 and 300kDa) were used to manufacture the scaffold, being the high molecular weight the most biologically active and stable after sterilization with gamma irradiation (25kGy). A clot hydrogel was formulated with autologous plasma and calcium chloride, using an approach based on design of experiments. The optimum hydrogel was used to incorporate cells onto the porous scaffold, forming a wound dressing biomaterial. The wound dressing device was firstly tested in-vitro using human cells, and then, its biosecurity was evaluated in-vivo using a rabbit model. The in-vitro results showed high cell viability after one week (99.5%), high mitotic index (19.8%) and high fibronectin expression. The in-vivo application to rabbits showed adequate biodegradability capacity (between 1 and 2weeks), and the histological evaluation confirmed absence of rejection signs and reepithelization on the wound zone. Finally, the wound dressing biomaterial was used in a single human case to implant autologous cells on a skin surgery. The medical examination indicated high biocompatibility, partial biodegradation at one week, early regeneration capacity at 4weeks and absence of rejection signs.


Asunto(s)
Hidrogeles/química , Animales , Materiales Biocompatibles , Humanos , Conejos , Células Madre , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA