Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37662349

RESUMEN

MAFA and MAFB are related basic-leucine-zipper domain containing transcription factors which have important regulatory roles in a variety of cellular contexts, including pancreatic islet hormone producing α and ß cells. These proteins have similar as well as distinct functional properties, and here we first used AlphaFold2, an artificial intelligence-based structural prediction program, to obtain insight into the three-dimensional organization of their non-DNA binding/dimerization sequences. This analysis was conducted on the wildtype (WT) proteins as well the pathogenic MAFA Ser64Phe (MAFA S64F ) and MAFB Ser70Ala (MAFB S70A ) mutants, with structural differences revealed between MAFA WT and MAFB WT in addition to MAFA S64F and MAFA WT , but not MAFB S70A and MAFB WT . Functional analysis disclosed that the inability to properly phosphorylate at S70 in MAFB S70A , like S65 in MAFA S64F , greatly increased protein stability and enabled MAFB S70A to accelerate cellular senescence in cultured cells. Significant differences were also observed in the ability of MAFA, MAFA S64F , MAFB, and MAFB S70A to cooperatively stimulate Insulin enhancer-driven activity in the presence of other islet-enriched transcription factors. Experiments performed on protein chimeras disclosed that these properties were greatly influenced by structural differences found between the WT and mutant proteins. In general, these results revealed that AlphaFold2 predicts features essential to protein activity.

2.
J Vasc Surg Venous Lymphat Disord ; 10(1): 211-220, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33872819

RESUMEN

BACKGROUND: This study evaluated E-selectin inhibition with GMI-1271 (Uproleselan [GMI]) alone and in combination with the standard of care low-molecular-weight heparin (LMWH) to improve vein recanalization, decrease vein wall inflammation and protect against adverse bleeding in a primate model. We sought to examine this novel treatment of venous thrombosis. METHODS: Using a well-documented primate animal model, iliac vein thrombosis was induced by balloon occlusion of the iliac vein for 6 hours. Starting on day 2 after thrombosis, animals began treatment in two phases. In phase one, nontreated controls received no treatment (n = 5) vs animals treated with the E-selectin inhibitor GMI, 25 mg/kg, subcutaneous (SC), once daily (n = 4) for 21 days (previously published data). In phase two, animals were treated with GMI plus a combination of LMWH 1.5 mg/kg or 40 mg (GMI + LMWHc) SC once daily (n = 8) for 19 days; and animals treated with LMWH 1.5 mg/kg or 40 mg (LMWHc) SC once daily (n = 6) for 19 days. Animals were evaluated by magnetic resonance venography for vein recanalization and inflammation by gadolinium extravasation, duplex ultrasound, coagulation tests (thromboelastography, bleeding time, prothrombin time, activated partial thromboplastin time, fibrinogen) and complete blood count at baseline, days 2, 7, 14, and 21 at euthanasia. Statistical analysis included using unpaired t test with Welch's correction for direct comparisons and one-way analysis of variance for comparison between the groups. RESULTS: Percent vein recanalization by magnetic resonance venography was highest in the GMI alone group followed by GMI + LMWHc, both significantly different from control. On ultrasound examination, animals treated with GMI alone had no decrease in open vein lumen by day 21, whereas decreases were observed in groups GMI + LMWHc (-26%), LMWHc (-27%), and controls (-80%). Vein wall inflammation decreased significantly in all treated groups. Intimal fibrosis and intimal thickness was best preserved in the GMI alone group. An analysis of total vein wall collagen revealed a trend in all treatment groups of decreasing vein wall collagen. No clinically significant bleeding events were noted in any group. The LMWH groups trended to have prolonged coagulation test values, whereas E-selectin inhibition with GMI did not cause clinically significant changes in coagulation measures. CONCLUSIONS: Treatment with E-selectin inhibition results in improved vein recanalization, a decrease in vein wall inflammation and vein wall intimal thickness and fibrosis, with no changes in markers of coagulation. E-selectin inhibition with GMI alone is superior to E-selectin inhibition combined with LMWH, LMWH alone, and no treatment in this deep vein thrombosis model of iliac vein thrombosis.


Asunto(s)
Anticoagulantes/uso terapéutico , Selectina E/antagonistas & inhibidores , Glucolípidos/uso terapéutico , Heparina de Bajo-Peso-Molecular/uso terapéutico , Trombosis de la Vena/tratamiento farmacológico , Animales , Papio
3.
J Vasc Surg Venous Lymphat Disord ; 8(2): 268-278, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32067728

RESUMEN

OBJECTIVE: There is an inter-relationship between thrombosis and inflammation. Previously, we have shown the importance of P-selectin in thrombogenesis and thrombus resolution in many preclinical animal models. The role of E-selectin has been explored in rodent models and in a small pilot study of clinical calf vein deep venous thrombosis. The purpose of this study was to determine the role of E-selectin in thrombosis in a primate model of proximal iliac vein thrombosis, a model close to the human condition. METHODS: Iliac vein thrombosis was induced with a well-characterized primate model. Through a transplant incision, the hypogastric vein and iliac vein branches were ligated. Thrombus was induced by balloon occlusion of the proximal and distal iliac vein for 6 hours. The balloons were then deflated, and the primates recovered. Starting on postocclusion day 2, animals were treated with the E-selectin inhibitor GMI-1271, 25 mg/kg subcutaneously, once daily until day 21 (n = 4). Nontreated control animals received no treatment (n = 5). All animals were evaluated by magnetic resonance venography (MRV); evaluation of vessel area by ultrasound, protein analysis, hematology (complete blood count), and coagulation tests (bleeding time, prothrombin time, activated partial thromboplastin time, fibrinogen, and thromboelastography) were performed at baseline, day 2, day 7, day 14, and day 21 with euthanasia. In addition, platelet function and CD44 expression on leukocytes were determined. RESULTS: E-selectin inhibition by GMI-1271 significantly increased vein recanalization by MRV vs control animals on day 14 (P < .05) and day 21 (P < .0001). GMI-1271 significantly decreased vein wall inflammation by MRV with gadolinium vein wall enhancement vs control also on day 14 (P < .0001) and day 21 (P < .0001). The thromboelastographic measure of clot strength (maximum amplitude) showed significant decreases in animals treated with GMI-1271 vs controls at day 2 (P < .05) and day 7 (P < .05). Animals treated with GMI-1271 had significant vessel area increase by day 21 vs controls (P < .05) by ultrasound. Vein wall intimal thickening (P < .001) and intimal fibrosis (P < .05) scores were significantly decreased in GMI-1271-treated animals vs controls. Importantly, no significant differences in hematology or coagulation test results were noted between all groups, suggesting that E-selectin inhibition carries no bleeding potential. GMI-1271 did not affect platelet function or aggregation or CD44 expression on leukocytes. In addition, no episodes of bleeding were noted in either group. CONCLUSIONS: This study suggests that E-selectin modulates venous thrombus progression and that its inhibition will increase thrombus recanalization and decrease vein wall inflammation, without affecting coagulation. The use of an E-selectin inhibitor such as GMI-1271 could potentially change how we treat deep venous thrombosis.


Asunto(s)
Antiinflamatorios/farmacología , Selectina E/antagonistas & inhibidores , Fibrinolíticos/farmacología , Glucolípidos/farmacología , Vena Ilíaca/efectos de los fármacos , Trombosis de la Vena/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Selectina E/metabolismo , Vena Ilíaca/diagnóstico por imagen , Vena Ilíaca/metabolismo , Papio , Transducción de Señal , Trombosis de la Vena/diagnóstico por imagen , Trombosis de la Vena/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA