Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 654, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956457

RESUMEN

BACKGROUND: Carcass weight (HCW) and marbling (MARB) are critical for meat quality and market value in beef cattle. In composite breeds like Brangus, which meld the genetics of Angus and Brahman, SNP-based analyses have illuminated some genetic influences on these traits, but they fall short in fully capturing the nuanced effects of breed of origin alleles (BOA) on these traits. Focus on the impacts of BOA on phenotypic features within Brangus populations can result in a more profound understanding of the specific influences of Angus and Brahman genetics. Moreover, the consideration of BOA becomes particularly significant when evaluating dominance effects contributing to heterosis in crossbred populations. BOA provides a more comprehensive measure of heterosis due to its ability to differentiate the distinct genetic contributions originating from each parent breed. This detailed understanding of genetic effects is essential for making informed breeding decisions to optimize the benefits of heterosis in composite breeds like Brangus. OBJECTIVE: This study aims to identify quantitative trait loci (QTL) influencing HCW and MARB by utilizing SNP and BOA information, incorporating additive, dominance, and overdominance effects within a multi-generational Brangus commercial herd. METHODS: We analyzed phenotypic data from 1,066 genotyped Brangus steers. BOA inference was performed using LAMP-LD software using Angus and Brahman reference sets. SNP-based and BOA-based GWAS were then conducted considering additive, dominance, and overdominance models. RESULTS: The study identified numerous QTLs for HCW and MARB. A notable QTL for HCW was associated to the SGCB gene, pivotal for muscle growth, and was identified solely in the BOA GWAS. Several BOA GWAS QTLs exhibited a dominance effect underscoring their importance in estimating heterosis. CONCLUSIONS: Our findings demonstrate that SNP-based methods may not detect all genetic variation affecting economically important traits in composite breeds. BOA inclusion in genomic evaluations is crucial for identifying genetic regions contributing to trait variation and for understanding the dominance value underpinning heterosis. By considering BOA, we gain a deeper understanding of genetic interactions and heterosis, which is integral to advancing breeding programs. The incorporation of BOA is recommended for comprehensive genomic evaluations to optimize trait improvements in crossbred cattle populations.


Asunto(s)
Cruzamiento , Estudio de Asociación del Genoma Completo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Bovinos/genética , Genotipo , Vigor Híbrido , Carne , Alelos
2.
BMC Genomics ; 22(1): 354, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001004

RESUMEN

BACKGROUND: Copy number variations (CNVs) are a major type of structural genomic variants that underlie genetic architecture and phenotypic variation of complex traits, not only in humans, but also in livestock animals. We identified CNVs along the chicken genome and analyzed their association with performance traits. Genome-wide CNVs were inferred from Affymetrix® high density SNP-chip data for a broiler population. CNVs were concatenated into segments and association analyses were performed with linear mixed models considering a genomic relationship matrix, for birth weight, body weight at 21, 35, 41 and 42 days, feed intake from 35 to 41 days, feed conversion ratio from 35 to 41 days and, body weight gain from 35 to 41 days of age. RESULTS: We identified 23,214 autosomal CNVs, merged into 5042 distinct CNV regions (CNVRs), covering 12.84% of the chicken autosomal genome. One significant CNV segment was associated with BWG on GGA3 (q-value = 0.00443); one significant CNV segment was associated with BW35 (q-value = 0.00571), BW41 (q-value = 0.00180) and BW42 (q-value = 0.00130) on GGA3, and one significant CNV segment was associated with BW on GGA5 (q-value = 0.00432). All significant CNV segments were verified by qPCR, and a validation rate of 92.59% was observed. These CNV segments are located nearby genes, such as KCNJ11, MyoD1 and SOX6, known to underlie growth and development. Moreover, gene-set analyses revealed terms linked with muscle physiology, cellular processes regulation and potassium channels. CONCLUSIONS: Overall, this CNV-based GWAS study unravels potential candidate genes that may regulate performance traits in chickens. Our findings provide a foundation for future functional studies on the role of specific genes in regulating performance in chickens.


Asunto(s)
Pollos , Variaciones en el Número de Copia de ADN , Animales , Pollos/genética , Genoma , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple
3.
J Dairy Sci ; 103(4): 3304-3311, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32063375

RESUMEN

Service sire has been recognized as an important factor affecting dairy herd fertility. Our group has reported promising results on gene mapping and genomic prediction of dairy bull fertility using autosomal SNP markers. Little is known, however, about the genetic contribution of sex chromosomes, which are enriched in genes related to sexual development and reproduction. As such, the main goal of this study was to investigate the effect of SNP markers on X and Y chromosomes (BTAX and BTAY, respectively) on sire conception rate (SCR) in US Holstein bulls. The analysis included a total of 5,014 bulls with SCR records and genotypes for roughly 291k SNP located on the autosomes, 1.5k SNP located on the pseudoautosomal region (PAR), 13.7k BTAX-specific SNP, and 24 BTAY-specific SNP. We first performed genomic scans of the sex chromosomes, and then we evaluated the genomic prediction of SCR including BTAX SNP markers in the predictive models. Two markers located on PAR and 3 markers located on the X-specific region showed significant associations with sire fertility. Interestingly, these regions harbor genes, such as FAM9B, TBL1X, and PIH1D3, that are directly implicated in testosterone concentration, spermatogenesis, and sperm motility. On the other hand, BTAY showed very low genetic variability, and none of the segregating markers were associated with SCR. Notably, model predictive ability was largely improved by including BTAX markers. Indeed, the combination of autosomal with BTAX SNP delivered predictive correlations around 0.343, representing an increase in accuracy of about 7.5% compared with the standard whole autosomal genome approach. Overall, this study provides evidence of the importance of both PAR and X-specific regions in male fertility in dairy cattle. These findings may help to improve conception rates in dairy herds through accurate genome-guided decisions on bull fertility.


Asunto(s)
Bovinos/genética , Fertilidad/genética , Marcadores Genéticos , Cromosomas Sexuales , Animales , Bovinos/fisiología , Mapeo Cromosómico , Femenino , Fertilización/genética , Genoma , Genotipo , Masculino , Polimorfismo de Nucleótido Simple , Regiones Pseudoautosómicas , Motilidad Espermática/genética , Espermatogénesis/genética
4.
J Dairy Sci ; 103(12): 11618-11627, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32981736

RESUMEN

The use of information across populations is an attractive approach to increase the accuracy of genomic predictions for numerically small breeds and traits that are time-consuming and difficult to measure, such as male fertility in cattle. This study was conducted to evaluate genomic prediction of Jersey bull fertility using an across-country reference population combining records from the United States and Australia. The data set consisted of 1,570 US Jersey bulls with sire conception rate (SCR) records, 603 Australian Jersey bulls with semen fertility value (SFV) records and SNP genotypes for roughly 90,000 loci. Both SCR and SFV are evaluations of service sire fertility based on cow field data, and both are intended as phenotypic evaluations because the estimates include genetic and nongenetic effects. Within- and across-country genomic predictions were evaluated using univariate and bivariate genomic best linear unbiased prediction models. Predictive ability was assessed in 5-fold cross-validation using the correlation between observed and predicted fertility values and mean squared error of prediction. Within-country genomic predictions exhibited predictive correlations of around 0.28 and 0.02 for the United States and Australia, respectively. The Australian Jersey population is genetically diverse and small in size, so careful selection of the reference population by including only closely related animals (e.g., excluding New Zealand bulls, which is a less-related population) increased the predictive correlations up to 0.20. Notably, the use of bivariate models fitting all US Jersey records and the optimized Australian population resulted in predictive correlations around of 0.24 for SFV values, which is a relative increase in predictive ability of 20%. Conversely, for predicting SCR values, the use of an across-country reference population did not outperform the standard approach using pure US Jersey reference data set. Our findings indicate that genomic prediction of male fertility in dairy cattle is feasible, and the use of an across-country reference population would be beneficial when local populations are small and genetically diverse.


Asunto(s)
Bovinos/genética , Fertilidad/genética , Genómica , Animales , Conjuntos de Datos como Asunto , Femenino , Fertilización , Genómica/métodos , Genotipo , Modelos Lineales , Masculino , Valores de Referencia
5.
Molecules ; 25(20)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066182

RESUMEN

Floral colour change is a widespread phenomenon in angiosperms, but poorly understood from the genetic and chemical point of view. This article investigates this phenomenon in Pleroma raddianum, a Brazilian endemic species whose flowers change from white to purple. To this end, flavonoid compounds and their biosynthetic gene expression were profiled. By using accurate techniques (Ultra Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UPLC-HRMS)), thirty phenolic compounds were quantified. Five key genes of the flavonoid biosynthetic pathway were partially cloned, sequenced, and the mRNA levels were analysed (RT-qPCR) during flower development. Primary metabolism was also investigated by gas chromatography coupled to mass spectrometry (GC-EIMS), where carbohydrates and organic acids were identified. Collectively, the obtained results suggest that the flower colour change in P. raddianum is determined by petunidin and malvidin whose accumulation coincides with the transcriptional upregulation of early and late biosynthetic genes of the flavonoid pathway, mainly CHS and ANS, respectively. An alteration in sugars, organic acids and phenolic co-pigments is observed together with the colour change. Additionally, an increment in the content of Fe3+ ions in the petals, from the pink to purple stage, seemed to influence the saturation of the colour.


Asunto(s)
Flores/química , Flores/fisiología , Melastomataceae/fisiología , Pigmentación/fisiología , Antocianinas/genética , Antocianinas/metabolismo , Brasil , Cromatografía Líquida de Alta Presión , Flavonoides/genética , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Espectrometría de Masas , Melastomataceae/química , Metales/análisis , Pigmentos Biológicos/análisis , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
BMC Genomics ; 20(1): 258, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940077

RESUMEN

BACKGROUND: Fertility is among the most important economic traits in dairy cattle. Genomic prediction for cow fertility has received much attention in the last decade, while bull fertility has been largely overlooked. The goal of this study was to assess genomic prediction of dairy bull fertility using markers with large effect and functional annotation data. Sire conception rate (SCR) was used as a measure of service sire fertility. Dataset consisted of 11.5 k U.S. Holstein bulls with SCR records and about 300 k single nucleotide polymorphism (SNP) markers. The analyses included the use of both single-kernel and multi-kernel predictive models fitting either all SNPs, markers with large effect, or markers with presumed functional roles, such as non-synonymous, synonymous, or non-coding regulatory variants. RESULTS: The entire set of SNPs yielded predictive correlations of 0.340. Five markers located on chromosomes BTA8, BTA9, BTA13, BTA17, and BTA27 showed marked dominance effects. Interestingly, the inclusion of these five major markers as fixed effects in the predictive models increased predictive correlations to 0.403, representing an increase in accuracy of about 19% compared with the standard model. Single-kernel models fitting functional SNP classes outperformed their counterparts using random sets of SNPs, suggesting that the predictive power of these functional variants is driven in part by their biological roles. Multi-kernel models fitting all the functional SNP classes together with the five major markers exhibited predictive correlations around 0.405. CONCLUSIONS: The inclusion of markers with large effect markedly improved the prediction of dairy sire fertility. Functional variants exhibited higher predictive ability than random variants, but did not outperform the standard whole-genome approach. This research is the foundation for the development of novel strategies that could help the dairy industry make accurate genome-guided selection decisions on service sire fertility.


Asunto(s)
Fertilidad/genética , Modelos Genéticos , Animales , Biomarcadores/metabolismo , Bovinos , Genotipo , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple
7.
BMC Genomics ; 20(1): 449, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31159736

RESUMEN

BACKGROUND: Natural and artificial selection leads to changes in certain regions of the genome resulting in selection signatures that can reveal genes associated with the selected traits. Selection signatures may be identified using different methodologies, of which some are based on detecting contiguous sequences of homozygous identical-by-descent haplotypes, called runs of homozygosity (ROH), or estimating fixation index (FST) of genomic windows that indicates genetic differentiation. This study aimed to identify selection signatures in a paternal broiler TT line at generations 7th and 16th of selection and to investigate the genes annotated in these regions as well as the biological pathways involved. For such purpose, ROH and FST-based analysis were performed using whole genome sequence of twenty-eight chickens from two different generations. RESULTS: ROH analysis identified homozygous regions of short and moderate size. Analysis of ROH patterns revealed regions commonly shared among animals and changes in ROH abundance and size between the two generations. Results also suggest that whole genome sequencing (WGS) outperforms SNPchip data avoiding overestimation of ROH size and underestimation of ROH number; however, sequencing costs can limited the number of animals analyzed. FST-based analysis revealed genetic differentiation in several genomic windows. Annotation of the consensus regions of ROH and FST windows revealed new and previously identified genes associated with traits of economic interest, such as APOB, IGF1, IGFBP2, POMC, PPARG, and ZNF423. Over-representation analysis of the genes resulted in biological terms of skeletal muscle, matrilin proteins, adipose tissue, hyperglycemia, diabetes, Salmonella infections and tyrosine. CONCLUSIONS: Identification of ROH and FST-based analyses revealed selection signatures in TT line and genes that have important role in traits of economic interest. Changes in the genome of the chickens were observed between the 7th and 16th generations showing that ancient and recent selection in TT line may have acted over genomic regions affecting diseases and performance traits.


Asunto(s)
Pollos/genética , Genética de Población , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Selección Genética , Animales , Pollos/fisiología , Femenino , Genoma , Homocigoto , Endogamia , Masculino , Fenotipo
8.
J Dairy Sci ; 102(4): 3230-3240, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30712930

RESUMEN

Service sire has a major effect on reproductive success in dairy cattle. Recent studies have reported accurate predictions for Holstein bull fertility using genomic data. The objective of this study was to assess the feasibility of genomic prediction of sire conception rate (SCR) in US Jersey cattle using alternative predictive models. Data set consisted of 1.5k Jersey bulls with SCR records and 95k SNP covering the entire genome. The analyses included the use of linear and Gaussian kernel-based models fitting either all the SNP or subsets of markers with presumed functional roles, such as SNP significantly associated with SCR or SNP located within or close to annotated genes. Model predictive ability was evaluated using 5-fold cross-validation with 10 replicates. The entire SNP set exhibited predictive correlations around 0.30. Interestingly, either SNP marginally associated with SCR or genic SNP achieved higher predictive abilities than their counterparts using random sets of SNP. Among alternative SNP subsets, Gaussian kernel models fitting significant SNP achieved the best performance with increases in predictive correlation up to 7% compared with the standard whole-genome approach. Notably, the use of a multi-breed reference population including the entire US Holstein SCR data set (11.5k bulls) allowed us to achieve predictive correlations up to 0.315, gaining 8% in accuracy compared with the standard model fitting a pure Jersey reference set. Overall, our findings indicate that genomic prediction of Jersey bull fertility is feasible. The use of Gaussian kernels fitting markers with relevant roles and the inclusion of Holstein records in the training set seem to be promising alternatives to the standard whole-genome approach. These results have the potential to help the dairy industry improve US Jersey sire fertility through accurate genome-guided decisions.


Asunto(s)
Bovinos/genética , Fertilidad/genética , Animales , Industria Lechera , Análisis de Datos , Femenino , Genoma , Genotipo , Masculino , Modelos Biológicos , Polimorfismo de Nucleótido Simple , Embarazo
9.
Molecules ; 24(4)2019 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-30781526

RESUMEN

Tibouchina pulchra (Cham.) Cogn. is a plant native to Brazil whose genus and family (Melastomataceae) are poorly studied with regards to its metabolite profile. Phenolic pigments of pink flowers were studied by ultra-performance liquid chromatography with a photodiode array detector and electrospray ionization quadrupole time-of-flight mass spectrometry. Therein, twenty-three flavonoids were identified with eight flavonols isolated by preparative high-performance liquid chromatography and analysed by one- and two-dimensional nuclear magnetic resonance. Kaempferol derivatives were the main flavonols, encompassing almost half of the detected compounds with different substitution patterns, such as glucoside, pentosides, galloyl-glucoside, p-coumaroyl-glucoside, and glucuronide. Concerning the anthocyanins, petunidin p-coumaroyl-hexoside acetylpentoside and malvidin p-coumaroyl-hexoside acetylpentoside were identified and agreed with previous reports on acylated anthocyanins from Melastomataceae. A new kaempferol glucoside was identified as kaempferol-(2''-O-methyl)-4'-O-α-d-glucopyranoside. Moreover, twelve compounds were described for the first time in the genus with five being new to the family, contributing to the chemical characterisation of these taxa.


Asunto(s)
Flavonoides/química , Flores/química , Glicósidos/química , Melastomataceae/química , Pigmentación , Árboles , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética , Extractos Vegetales/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
J Phys Ther Sci ; 27(3): 763-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25931726

RESUMEN

[Purpose] The aim of the present study was to investigate the effects of a single session of transcranial direct current stimulation combined with virtual reality training on the balance of children with cerebral palsy. [Subjetcs and Methods] Children with cerebral palsy between four and 12 years of age were randomly allocated to two groups: an experimental group which performed a single session of mobility training with virtual reality combined with active transcranial direct current stimulation; and a control group which performed a single session of mobility training with virtual reality combined with placebo transcranial direct current stimulation. The children were evaluated before and after the training protocols. Static balance (sway area, displacement, velocity and frequency of oscillations of the center of pressure on the anteroposterior and mediolateral axes) was evaluated using a force plate under four conditions (30-second measurements for each condition): feet on the force plate with the eyes open, and with the eyes closed; feet on a foam mat with the eyes open, and with the eyes closed. [Results] An increase in sway velocity was the only significant difference found. [Conclusion] A single session of anodal transcranial direct current stimulation combined with mobility training elicited to lead to an increase in the body sway velocity of children with cerebral palsy.

11.
J Appl Genet ; 65(2): 383-394, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38528244

RESUMEN

Composite breeds, including Brangus, are widely utilized in subtropical and tropical regions to harness the advantages of both Bos t. taurus and Bos t. indicus breeds. The formation and subsequent selection of composite breeds may result in discernible signatures of selection and shifts in genomic population structure. The objectives of this study were to 1) assess genomic inbreeding, 2) identify signatures of selection, 3) assign functional roles to these signatures in a commercial Brangus herd, and 4) contrast signatures of selection between selected and non-selected cattle from the same year. A total of 4035 commercial Brangus cattle were genotyped using the GGP-F250K array. Runs of Homozygosity (ROH) were used to identify signatures of selection and calculate genomic inbreeding. Quantitative trait loci (QTL) enrichment analysis and literature search identified phenotypic traits linked to ROH islands. Genomic inbreeding averaged 5%, primarily stemming from ancestors five or more generations back. A total of nine ROH islands were identified, QTL enrichment analysis revealed traits related to growth, milk composition, carcass, reproductive, and meat quality traits. Notably, the ROH island on BTA14 encompasses the pleiomorphic adenoma (PLAG1) gene, which has been linked to growth, carcass, and reproductive traits. Moreover, ROH islands associated with milk yield and composition were more pronounced in selected replacement heifers of the population, underscoring the importance of milk traits in cow-calf production. In summary, our research sheds light on the changing genetic landscape of the Brangus breed due to selection pressures and reveals key genomic regions impacting production traits.


Asunto(s)
Genómica , Endogamia , Bovinos/genética , Animales , Femenino , Genotipo , Homocigoto , Sitios de Carácter Cuantitativo , Polimorfismo de Nucleótido Simple
12.
Viruses ; 16(4)2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675917

RESUMEN

The incidence of chikungunya has dramatically surged worldwide in recent decades, imposing an expanding burden on public health. In recent years, South America, particularly Brazil, has experienced outbreaks that have ravaged populations following the rapid dissemination of the chikungunya virus (CHIKV), which was first detected in 2014. The primary vector for CHIKV transmission is the urban mosquito species Aedes aegypti, which is highly prevalent throughout Brazil. However, the impact of the locally circulating CHIKV genotypes and specific combinations of local mosquito populations on vector competence remains unexplored. Here, we experimentally analyzed and compared the infectivity and transmissibility of the CHIKV-ECSA lineage recently isolated in Brazil among four Ae. aegypti populations collected from different regions of the country. When exposed to CHIKV-infected AG129 mice for blood feeding, all the mosquito populations displayed high infection rates and dissemination efficiency. Furthermore, we observed that all the populations were highly efficient in transmitting CHIKV to a vertebrate host (naïve AG129 mice) as early as eight days post-infection. These results demonstrate the high capacity of Brazilian Ae. aegypti populations to transmit the locally circulating CHIKV-ECSA lineage. This observation could help to explain the high prevalence of the CHIKV-ECSA lineage over the Asian lineage, which was also detected in Brazil in 2014. However, further studies comparing both lineages are necessary to gain a better understanding of the vector's importance in the epidemiology of CHIKV in the Americas.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Mosquitos Vectores , Animales , Aedes/virología , Virus Chikungunya/genética , Virus Chikungunya/clasificación , Virus Chikungunya/fisiología , Virus Chikungunya/aislamiento & purificación , Brasil/epidemiología , Fiebre Chikungunya/transmisión , Fiebre Chikungunya/virología , Fiebre Chikungunya/epidemiología , Ratones , Mosquitos Vectores/virología , Genotipo , Femenino , Filogenia
13.
Sci Rep ; 13(1): 21900, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082150

RESUMEN

Periparturient hypocalcemia is a complex metabolic disorder that occurs at the onset of lactation because of a sudden irreversible loss of Ca incorporated into colostrum and milk. Some cows are unable to quickly adapt to this demand and succumb to clinical hypocalcemia, commonly known as milk fever, whereas a larger proportion of cows develop subclinical hypocalcemia. The main goal of this study was to identify causative mutations and candidate genes affecting postpartum blood calcium concentration in Holstein cows. Data consisted of blood calcium concentration measured in 2513 Holstein cows on the first three days after parturition. All cows had genotypic information for 79 k SNP markers. Two consecutive rounds of imputation were performed: first, the 2513 Holstein cows were imputed from 79 k to 312 k SNP markers. This imputation was performed using a reference set of 17,131 proven Holstein bulls with 312 k SNP markers. Then, the 2513 Holstein cows were imputed from 312 k markers to whole-genome sequence data. This second round of imputation used 179 Holstein animals from the 1000 Bulls Genome Project as a reference set. Three alternative phenotypes were evaluated: (1) total calcium concentration in the first 24 h postpartum, (2) total calcium concentration in the first 72 h postpartum calculated as the area under the curve; and (3) the recovery of total calcium concentration calculated as the difference in total calcium concentration between 72 and 24 h. The identification of genetic variants associated with these traits was performed using a two-step mixed model-based approach implemented in the R package MixABEL. The most significant variants were located within or near genes involved in calcium homeostasis and vitamin D transport (GC), calcium and potassium channels (JPH3 and KCNK13), energy and lipid metabolism (CA5A, PRORP, and SREBP1), and immune response (IL12RB2 and CXCL8), among other functions. This work provides the foundation for the development of novel breeding and management tools for reducing the incidence of periparturient hypocalcemia in dairy cattle.


Asunto(s)
Enfermedades de los Bovinos , Hipocalcemia , Trastornos Puerperales , Embarazo , Femenino , Humanos , Bovinos , Animales , Masculino , Hipocalcemia/genética , Hipocalcemia/veterinaria , Hipocalcemia/metabolismo , Calcio/metabolismo , Periodo Posparto/genética , Parto/fisiología , Lactancia/fisiología , Leche/metabolismo , Calcio de la Dieta/metabolismo , Dieta/veterinaria
14.
bioRxiv ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37961153

RESUMEN

The global incidence of chikungunya has surged in recent decades, with South America, particularly Brazil, experiencing devastating outbreaks. The primary vector for transmitting CHIKV in urban areas is the mosquito species Aedes aegypti, which is very abundant in Brazil. However, little is known about the impact of locally circulating CHIKV genotypes and specific combinations of mosquito populations on vector competence. In this study, we analyzed and compared the infectivity and transmissibility of a recently isolated CHIKV-ECSA lineage from Brazil among four Ae. aegypti populations collected from different regions of the country. When exposed to CHIKV-infected mice for blood feeding, all mosquito populations showed high infection rates and dissemination efficiency. Moreover, using a mouse model to assess transmission rates in a manner that better mirrors natural cycles, we observed that these populations exhibit highly efficient transmission rates of CHIKV-ECSA. Our findings underscore the robust capability of Brazilian Ae. aegypti populations to transmit the locally circulating CHIKV-ECSA lineage, potentially explaining its higher prevalence compared to the Asian lineage also introduced in Brazil.

15.
Neurotoxicology ; 90: 184-196, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395329

RESUMEN

Despite advances in research on the vaccine and therapeutic strategies of COVID-19, little attention has been paid to the possible (eco)toxicological impacts of the dispersion of SARS-CoV-2 particles in natural environments. Thus, in this study, we aimed to evaluate the behavioral and biochemical consequences of the short exposure of outbred and inbred mice (male Swiss and C57Bl/6 J mice, respectively) to PSPD-2002 (peptide fragments of the Spike protein of SARS-CoV-2) synthesized in the laboratory. Our data demonstrated that after 24 h of intraperitoneal administration of PSPD-2002 (at 580 µg/kg) the animals did not present alterations in their locomotor, anxiolytic-like, or anxiety-like behavior (in the open field test), nor antidepressant-like or depressive behavior in the forced swimming test. However, the C57Bl/6 J mice exposed to PSPD-2002 showed memory deficit in the novel object recognition task, which was associated with higher production of thiobarbituric acid reactive substances, as well as the increased suppression of acetylcholinesterase brain activity, compared to Swiss mice also exposed to peptide fragments. In Swiss mice the reduction in the activity of superoxide dismutase and catalase in the brain was not associated with increased oxidative stress biomarkers (hydrogen peroxide), suggesting that other antioxidant mechanisms may have been activated by exposure to PSPD-2002 to maintain the animals' brain redox homeostasis. Finally, the results of all biomarkers evaluated were applied into the "Integrated Biomarker Response Index" (IBRv2) and the principal component analysis (PCA), and greater sensitivity of C57Bl/6 J mice to PSPD-2002 was revealed. Therefore, our study provides pioneering evidence of mammalian exposure-induced toxicity (non-target SARS-CoV-2 infection) to PSPD-2002, as well as "sheds light" on the influence of genetic profile on susceptibility/resistance to the effects of viral peptide fragments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Acetilcolinesterasa , Animales , Biomarcadores , Masculino , Mamíferos , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos , Péptidos
16.
Pathogens ; 11(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36015000

RESUMEN

Arboviruses (an acronym for "arthropod-borne virus"), such as dengue, yellow fever, Zika, and Chikungunya, are important human pathogens transmitted by mosquitoes. These viruses impose a growing burden on public health. Despite laboratory mice having been used for decades for understanding the basic biological phenomena of these viruses, it was only recently that researchers started to develop immunocompromised animals to study the pathogenesis of arboviruses and their transmission in a way that parallels natural cycles. Here, we show that the AG129 mouse (IFN α/ß/γ R-/-) is a suitable and comprehensive vertebrate model for studying the mosquito vector competence for the major arboviruses of medical importance, namely the dengue virus (DENV), yellow fever virus (YFV), Zika virus (ZIKV), Mayaro virus (MAYV), and Chikungunya virus (CHIKV). We found that, after intraperitoneal injection, AG129 mice developed a transient viremia lasting several days, peaking on day two or three post infection, for all five arboviruses tested in this study. Furthermore, we found that the observed viremia was ample enough to infect Aedes aegypti during a blood meal from the AG129 infected mice. Finally, we demonstrated that infected mosquitoes could transmit each of the tested arboviruses back to naïve AG129 mice, completing a full transmission cycle of these vector-borne viruses. Together, our data show that A129 mice are a simple and comprehensive vertebrate model for studies of vector competence, as well as investigations into other aspects of mosquito biology that can affect virus-host interactions.

17.
Aquat Toxicol ; 245: 106104, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35176694

RESUMEN

There have been significant impacts of the current COVID-19 pandemic on society including high health and economic costs. However, little is known about the potential ecological risks of this virus despite its presence in freshwater systems. In this study, we aimed to evaluate the exposure of Poecilia reticulata juveniles to two peptides derived from Spike protein of SARS-CoV-2, which was synthesized in the laboratory (named PSPD-2002 and PSPD-2003). For this, the animals were exposed for 35 days to the peptides at a concentration of 40 µg/L and different toxicity biomarkers were assessed. Our data indicated that the peptides were able to induce anxiety-like behavior in the open field test and increased acetylcholinesterase (AChE) activity. The biometric evaluation also revealed that the animals exposed to the peptides displayed alterations in the pattern of growth/development. Furthermore, the increased activity of superoxide dismutase (SOD) and catalase (CAT) enzymes were accompanied by increased levels of malondialdehyde (MDA), reactive oxygen species (ROS) and hydrogen peroxide (H2O2), which suggests a redox imbalance induced by SARS-CoV-2 spike protein peptides. Moreover, molecular docking analysis suggested a strong interaction of the peptides with the enzymes AChE, SOD and CAT, allowing us to infer that the observed effects are related to the direct action of the peptides on the functionality of these enzymes. Consequently, our study provided evidence that the presence of SARS-CoV-2 viral particles in the freshwater ecosystems offer a health risk to fish and other aquatic organisms.


Asunto(s)
COVID-19 , Poecilia , Contaminantes Químicos del Agua , Acetilcolinesterasa/metabolismo , Animales , Catalasa/metabolismo , Ecosistema , Humanos , Peróxido de Hidrógeno , Simulación del Acoplamiento Molecular , Pandemias , Poecilia/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/toxicidad
18.
Molecules ; 16(11): 9439-50, 2011 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-22075573

RESUMEN

Miconia is one of the largest genus of the Melastomataceae, with approximately 1,000 species. Studies aiming to describe the diverse biological activities of the Miconia species have shown promising results, such as analgesic, antimicrobial and trypanocidal properties. M. albicans leaves were dried, powdered and extracted to afford chloroformic and methanolic extracts. Total phenolic contents in the methanolic extract were determined according to modified Folin-Ciocalteu method. The antioxidant activity was measured using AAPH and DPPH radical assays. Chemical analysis was performed with the n-butanol fraction of the methanolic extract and the chloroformic extract, using different chromatographic techniques (CC, HPLC). The structural elucidation of compounds was performed using 500 MHz NMR and HPLC methods. The methanolic extract showed a high level of total phenolic contents; the results with antioxidant assays showed that the methanolic extract, the n-butanolic fraction and the isolated flavonoids from M. albicans had a significant scavenging capacity against AAPH and DPPH. Quercetin, quercetin-3-O-glucoside, rutin, 3-(E)-p-coumaroyl-α-amyrin was isolated from the n-butanolic fraction and α-amyrin, epi-betulinic acid, ursolic acid, epi-ursolic acid from the chloroformic extract. The results presented in this study demonstrate that M. albicans is a promising species in the search for biologically active compounds.


Asunto(s)
Antioxidantes/análisis , Melastomataceae/anatomía & histología , Melastomataceae/química , Fenoles/análisis , Hojas de la Planta/química , Animales , Antioxidantes/farmacología , Compuestos de Bifenilo/química , Eritrocitos/efectos de los fármacos , Flavonoides/análisis , Flavonoides/farmacología , Radicales Libres/química , Hemólisis/efectos de los fármacos , Humanos , Metanol/química , Estructura Molecular , Fenoles/farmacología , Picratos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
19.
Front Genet ; 12: 627055, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815465

RESUMEN

Carcass and meat quality are two important attributes for the beef industry because they drive profitability and consumer demand. These traits are of even greater importance in crossbred cattle used in subtropical and tropical regions for their superior adaptability because they tend to underperform compared to their purebred counterparts. Many of these traits are challenging and expensive to measure and unavailable until late in life or after the animal is harvested, hence unrealistic to improve through traditional phenotypic selection, but perfect candidates for genomic selection. Before genomic selection can be implemented in crossbred populations, it is important to explore if pleiotropic effects exist between carcass and meat quality traits. Therefore, the objective of this study was to identify genomic regions with pleiotropic effects on carcass and meat quality traits in a multibreed Angus-Brahman population that included purebred and crossbred animals. Data included phenotypes for 10 carcass and meat quality traits from 2,384 steers, of which 1,038 were genotyped with the GGP Bovine F-250. Single-trait genome-wide association studies were first used to investigate the relevance of direct additive genetic effects on each carcass, sensory and visual meat quality traits. A second analysis for each trait included all other phenotypes as covariates to correct for direct causal effects from identified genomic regions with pure direct effects on the trait under analysis. Five genomic windows on chromosomes BTA5, BTA7, BTA18, and BTA29 explained more than 1% of additive genetic variance of two or more traits. Moreover, three suggestive pleiotropic regions were identified on BTA10 and BTA19. The 317 genes uncovered in pleiotropic regions included anchoring and cytoskeletal proteins, key players in cell growth, muscle development, lipid metabolism and fat deposition, and important factors in muscle proteolysis. A functional analysis of these genes revealed GO terms directly related to carcass quality, meat quality, and tenderness in beef cattle, including calcium-related processes, cell signaling, and modulation of cell-cell adhesion. These results contribute with novel information about the complex genetic architecture and pleiotropic effects of carcass and meat quality traits in crossbred beef cattle.

20.
Meat Sci ; 171: 108281, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32892086

RESUMEN

The present study estimated genetic parameters and evaluated the genetic and phenotypic correlations between meat quality characteristics of Nellore cattle evaluated at different anatomical points of the longissimus. Data from 1329 Nellore young bulls were used to evaluate, in the 5th and 12th ribs, marbling score (MAR), shear force (SF), cooking weight losses (CWL) and intramuscular fat (IMF). In addition, the subcutaneous fat thickness was measured at the 12th rib (SFT12) and between the last lumbar and the first sacral vertebrae (SFTLR), in the separation of loin and round. Results yielded moderate heritability coefficients for evaluated characteristics, except CWL. High genetic correlations (0.61) were found between measurements of SFT12 and SFTLR. MAR, IMF and SF were evaluated at the 5th and 12th rib. Meat quality and subcutaneous fat thickness measured at different anatomical points of the longissimus are genetically correlated and can be used in genetic selection programs to improve meat quality characteristics in Nellore cattle.


Asunto(s)
Bovinos/genética , Carne Roja/análisis , Carne Roja/normas , Tejido Adiposo , Animales , Composición Corporal/genética , Brasil , Culinaria , Masculino , Músculos Paraespinales/anatomía & histología , Resistencia al Corte , Grasa Subcutánea/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA