Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Dev Dyn ; 242(11): 1332-44, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24038871

RESUMEN

BACKGROUND: Dynamic alterations in cell shape, migration, and adhesion play a central role in tissue morphogenesis during embryonic development and congenital disease. The mesenchymal-to-epithelial transition that occurs during vertebrate somitogenesis is required for proper patterning of the axial musculoskeletal system. Somitic MET is initiated in the presomitic mesoderm by PARAXIS-dependent changes in cell adhesion, cell polarity, and the composition of the extracellular matrix. However, the target genes downstream of the transcription factor PARAXIS remain poorly described. RESULTS: A genome-wide comparison of gene expression in the anterior presomitic mesoderm and newly formed somites of Paraxis(-/-) embryos resulted in a set of deregulated genes enriched for factors associated with extracellular matrix and cytoskeletal organization and cell-cell and cell-ECM adhesion. The greatest change in expression was seen in fibroblast activation protein alpha (Fap), encoding a dipeptidyl peptidase capable of increasing fibronectin and collagen fiber organization in extracellular matrix. Further, downstream genes in the Wnt and Notch signaling pathways were downregulated, predicting that PARAXIS participates in positive feedback loops in both pathways. CONCLUSIONS: These data demonstrate that PARAXIS initiates and stabilizes somite epithelialization by integrating signals from multiple pathways to control the reorganization of the ECM, cytoskeleton, and adhesion junctions during MET.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Somitos/citología , Somitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endopeptidasas , Transición Epitelial-Mesenquimal/genética , Técnica del Anticuerpo Fluorescente Indirecta , Gelatinasas/genética , Gelatinasas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Dev Biol ; 365(1): 1-13, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22426104

RESUMEN

The mouse posterior primitive streak at neural plate/headfold stages (NP/HF, ~7.5 dpc-8 dpc) represents an optimal window from which hemangioblasts can be isolated. We performed immunohistochemistry on this domain using established monoclonal antibodies for proteins that affect blood and endothelial fates. We demonstrate that HoxB4 and GATA1 are the first set of markers that segregate independently to endothelial or blood populations during NP/HF stages of mouse embryonic development. In a subset of cells, both proteins are co-expressed and immunoreactivities appear mutually excluded within nuclear spaces. We searched for this particular state at later sites of hematopoietic stem cell emergence, viz., the aorta-gonad-mesonephros (AGM) and the fetal liver at 10.5-11.5 dpc, and found that only a rare number of cells displayed this character. Based on this spatial-temporal argument, we propose that the earliest blood progenitors emerge either directly from the epiblast or through segregation within the allantoic core domain (ACD) through reduction of cell adhesion and pSmad1/5 nuclear signaling, followed by a stochastic decision toward a blood or endothelial fate that involves GATA1 and HoxB4, respectively. A third form in which binding distributions are balanced may represent a common condition shared by hemangioblasts and HSCs. We developed a heuristic model of hemangioblast maturation, in part, to be explicit about our assumptions.


Asunto(s)
Linaje de la Célula , Hemangioblastos/citología , Hematopoyesis , Línea Primitiva/citología , Animales , Biomarcadores , Células Sanguíneas/citología , Diferenciación Celular , Endotelio Vascular/citología , Factor de Transcripción GATA1 , Hemangioblastos/fisiología , Proteínas de Homeodominio , Inmunohistoquímica , Mesonefro , Ratones , Modelos Biológicos , Línea Primitiva/embriología , Factores de Transcripción
3.
Methods Enzymol ; 438: 391-417, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18413263

RESUMEN

Activating Kras mutations are a pervasive and characteristic feature of human pancreatic cancer. In order to examine the earliest in vivo effects of oncogenic Kras expression in the exocrine pancreas, we generated two lines of zebrafish expressing eGFP alone or eGFP fused to human Kras with an activating mutation in codon 12 (Kras G12V) driven by ptf1a regulatory elements using a BAC recombineering strategy (Park et al., 2008). In this review, we describe the techniques that we used to observe the effects of eGFP-Kras G12V expression in pancreatic progenitor cells of the zebrafish embryo, as well as techniques used to characterize malignant pancreatic tumors in the adult zebrafish. This zebrafish model of pancreatic neoplasia provides a unique view of the effects of oncogenic Kras in the embryonic pancreas and suggests that the zebrafish will be a useful model organism in which to study the biology of Kras-initiated pancreatic neoplasia.


Asunto(s)
Genes ras/fisiología , Neoplasias Pancreáticas/etiología , Proteínas ras/efectos adversos , Proteínas ras/genética , Animales , Animales Modificados Genéticamente , Diferenciación Celular/efectos de los fármacos , Cromosomas Artificiales Bacterianos , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Páncreas Exocrino/embriología , Páncreas Exocrino/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , ARN sin Sentido/metabolismo , Pez Cebra
4.
Mech Dev ; 124(3): 218-29, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17223324

RESUMEN

In order to generate a zebrafish model of beta cell regeneration, we have expressed an Escherichia coli gene called nfsB in the beta cells of embryonic zebrafish. This bacterial gene encodes a nitroreductase (NTR) enzyme, which can convert prodrugs such as metronidazole (Met) to cytotoxins. By fusing nfsB to mCherry, we can simultaneously render beta cells susceptible to prodrug and visualize Met dependent cell ablation. We show that the neighboring alpha and delta cells are unaffected by prodrug treatment and that ablation is beta cell specific. Following drug removal and 36h of recovery, beta cells regenerate. Using ptf1a morphants, it is clear that this beta cell recovery occurs independently of the presence of the exocrine pancreas. Also, by using photoconvertible Kaede to cell lineage trace and BrdU incorporation to label proliferation, we investigate mechanisms for beta regeneration. Therefore, we have developed a unique resource for the study of beta cell regeneration in a living vertebrate organism, which will provide the opportunity to conduct large-scale screens for pharmacological and genetic modifiers of beta cell regeneration.


Asunto(s)
Apoptosis/genética , Proteínas de Escherichia coli/fisiología , Escherichia coli/enzimología , Células Secretoras de Insulina/metabolismo , Nitrorreductasas/fisiología , Páncreas/enzimología , Pez Cebra/embriología , Animales , Diabetes Mellitus , Modelos Animales de Enfermedad , Células Secretoras de Insulina/patología , Páncreas/citología , Páncreas/embriología , Páncreas/patología , Regeneración/genética
5.
Dev Biol ; 304(2): 811-24, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17335798

RESUMEN

Prior studies with transgenic zebrafish confirmed the functionality of the transcription factor Gal4 to drive expression of other genes under the regulation of upstream activator sequences (UAS). However, widespread application of this powerful binary system has been limited, in part, by relatively inefficient techniques for establishing transgenic zebrafish and by the inadequacy of Gal4 to effect high levels of expression from UAS-regulated genes. We have used the Tol2 transposition system to distribute a self-reporting gene/enhancer trap vector efficiently throughout the zebrafish genome. The vector uses the potent, hybrid transcription factor Gal4-VP16 to activate expression from a UAS:eGFP reporter cassette. In a pilot screen, stable transgenic lines were established that express eGFP in reproducible patterns encompassing a wide variety of tissues, including the brain, spinal cord, retina, notochord, cranial skeleton and muscle, and can transactivate other UAS-regulated genes. We demonstrate the utility of this approach to track Gal4-VP16 expressing migratory cells in UAS:Kaede transgenic fish, and to induce tissue-specific cell death using a bacterial nitroreductase gene under UAS control. The Tol2-mediated gene/enhancer trapping system together with UAS transgenic lines provides valuable tools for regulated gene expression and for targeted labeling and ablation of specific cell types and tissues during early zebrafish development.


Asunto(s)
Elementos de Facilitación Genéticos , Transactivadores/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Muerte Celular , Elementos Transponibles de ADN , Proteínas de Escherichia coli/genética , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Nitrorreductasas/genética , Especificidad de Órganos , Transactivadores/biosíntesis , Transactivadores/genética , Activación Transcripcional , Pez Cebra/embriología , Pez Cebra/genética
6.
Genesis ; 44(4): 202-18, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16604528

RESUMEN

The visualization of live cell behaviors operating in situ combined with the power of mouse genetics represents a major step toward understanding the mechanisms regulating embryonic development, homeostasis, and disease progression in mammals. The availability of genetically encoded fluorescent protein reporters, combined with improved optical imaging modalities, have led to advances in our ability to examine cells in vivo. We developed a series of lipid-modified fluorescent protein fusions that are targeted to and label the secretory pathway and the plasma membrane, and that are amenable for use in mice. Here we report the generation of two strains of mice, each expressing a spectrally distinct lipid-modified GFP-variant fluorescent protein fusion. The CAG::GFP-GPI strain exhibited widespread expression of a glycosylphosphatidylinositol-tagged green fluorescent protein (GFP) fusion, while the CAG::myr-Venus strain exhibited widespread expression of a myristoyl-Venus yellow fluorescent protein fusion. Imaging of live transgenic embryonic stem (ES) cells, either live or fixed embryos and postnatal tissues demonstrated that glycosylphosphatidyl inositol- and myristoyl-tagged GFP-variant fusion proteins are targeted to and serve as markers of the plasma membrane. Moreover, our data suggest that these two lipid-modified protein fusions are dynamically targeted both to overlapping as well as distinct lipid-enriched compartments within cells. These transgenic strains not only represent high-contrast reporters of cell morphology and plasma membrane dynamics, but also may be used as in vivo sensors of lipid localization. Furthermore, combining these reporters with the study of mouse mutants will be a step forward in understanding the inter- and intracellular behaviors underlying morphogenesis in both normal and mutant contexts.


Asunto(s)
Embrión de Mamíferos/citología , Técnicas Genéticas , Lípidos/química , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Células Madre/metabolismo , Animales , Animales no Consanguíneos , Blastocisto/citología , Células COS , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Cruzamientos Genéticos , Variación Genética , Vectores Genéticos , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Procesamiento de Imagen Asistido por Computador , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos ICR , Ratones Endogámicos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Células Madre/citología , Transgenes
7.
Genesis ; 43(3): 136-47, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16267822

RESUMEN

The ascidian Ciona intestinalis is one of the model organisms of choice for comparative investigations of chordate development and for unraveling the molecular mechanisms underlying morphogenesis and cell fate specification. Taking advantage of the availability of various genetically encoded fluorescent proteins and of defined cis-regulatory elements, we combined transient transgenesis with laser scanning confocal imaging to acquire and quantitate 3D time-lapse data from living Ciona embryos. We used Ciona tissue-specific enhancers to drive expression of spectrally distinct fluorescent protein reporters to label and simultaneously visualize axially and paraxially positioned mesodermal derivatives, as well as neural precursors in individual embryos. We observed morphogenetic movements, without perturbing development, from the early gastrula throughout the larval stage, including gastrulation, neurulation, convergent extension of the presumptive notochord, and tail elongation. These multidimensional data allowed us to establish a reference system of metrics to quantify key developmental events including blastopore closure and muscle extension. The approach we describe can be used to document morphogenetic cell and tissue rearrangements in living embryos and paves the way for a live digitized anatomical atlas of Ciona.


Asunto(s)
Ciona intestinalis/embriología , Morfogénesis , Músculo Esquelético/embriología , Notocorda/embriología , Animales , Animales Modificados Genéticamente , Movimiento Celular , Ciona intestinalis/genética , Electroporación , Regulación del Desarrollo de la Expresión Génica , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Microscopía Confocal , Morfogénesis/genética , Plásmidos/genética , Cola (estructura animal)/embriología
8.
J Biol Chem ; 279(36): 37685-92, 2004 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-15226298

RESUMEN

Members of the Twist subfamily of basic helix-loop-helix transcription factors are important for the specification of mesodermal derivatives during vertebrate embryogenesis. This subfamily includes both transcriptional activators such as scleraxis, Hand2, and Dermo-1 and repressors such as Twist and Hand1. Paraxis is a member of this subfamily, and it has been shown to regulate morphogenetic events during somitogenesis, including the transition of cells from mesenchyme to epithelium and maintaining anterior/posterior polarity. Mice deficient in paraxis exhibit a caudal truncation of the axial skeleton and fusion of the vertebrae. Considering the developmental importance of paraxis, it is important for future studies to understand the molecular basis of its activity. Here we demonstrate that paraxis can function as a transcriptional activator when it forms a heterodimer with E12. Paraxis is able to bind to a set of E-boxes that overlaps with the closely related scleraxis. Paraxis expression precedes that of scleraxis in the region of the somite fated to form the axial skeleton and tendons and is able to direct transcription from an E-box found in the scleraxis promoter. Further, in the absence of paraxis, Pax-1 is no longer expressed in the somites and presomitic mesoderm. These results suggest that paraxis may regulate early events during chondrogenesis by positively directing transcription of sclerotome-specific genes.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Secuencias Hélice-Asa-Hélice , Transcripción Genética/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Sitios de Unión , Línea Celular , Cartilla de ADN , Proteínas de Unión al ADN/metabolismo , Ratones , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA