Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Psychiatry ; 27(10): 3980-3991, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35764708

RESUMEN

Psychostimulant exposure alters the activity of ventral pallidum (VP) projection neurons. However, the molecular underpinnings of these circuit dysfunctions are unclear. We used RNA-sequencing to reveal alterations in the transcriptional landscape of the VP that are induced by cocaine self-administration in mice. We then probed gene expression in select VP neuronal subpopulations to isolate a circuit associated with cocaine intake. Finally, we used both overexpression and CRISPR-mediated knockdown to test the role of a gene target on cocaine-mediated behaviors as well as dendritic spine density. Our results showed that a large proportion (55%) of genes associated with structural plasticity were changed 24 h following cocaine intake. Among them, the transcription factor Nr4a1 (Nuclear receptor subfamily 4, group A, member 1, or Nur77) showed high expression levels. We found that the VP to mediodorsal thalamus (VP → MDT) projection neurons specifically were recapitulating this increase in Nr4a1 expression. Overexpressing Nr4a1 in VP → MDT neurons enhanced drug-seeking and drug-induced reinstatement, while Nr4a1 knockdown prevented self-administration acquisition and subsequent cocaine-mediated behaviors. Moreover, we showed that Nr4a1 negatively regulated spine dynamics in this specific cell subpopulation. Together, our study identifies for the first time the transcriptional mechanisms occurring in VP in drug exposure. Our study provides further understanding on the role of Nr4a1 in cocaine-related behaviors and identifies the crucial role of the VP → MDT circuit in drug intake and relapse-like behaviors.


Asunto(s)
Prosencéfalo Basal , Cocaína , Animales , Ratones , Cocaína/metabolismo , Prosencéfalo Basal/metabolismo , Recompensa , Neuronas/metabolismo , Tálamo , Perfilación de la Expresión Génica
2.
Biol Psychiatry ; 93(6): 489-501, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435669

RESUMEN

BACKGROUND: Opioid discontinuation generates a withdrawal syndrome marked by increased negative affect. Increased symptoms of anxiety and dysphoria during opioid discontinuation are significant barriers to achieving long-term abstinence in opioid-dependent individuals. While adaptations in the nucleus accumbens are implicated in opioid abstinence syndrome, the precise neural mechanisms are poorly understood. Additionally, our current knowledge is limited to changes following natural and semisynthetic opioids, despite recent increases in synthetic opioid use and overdose. METHODS: We used a combination of cell subtype-specific viral labeling and electrophysiology in male and female mice to investigate structural and functional plasticity in nucleus accumbens medium spiny neuron (MSN) subtypes after fentanyl abstinence. We characterized molecular adaptations after fentanyl abstinence with subtype-specific RNA sequencing and weighted gene co-expression network analysis. We used viral-mediated gene transfer to manipulate the molecular signature of fentanyl abstinence in D1-MSNs. RESULTS: Here, we show that fentanyl abstinence increases anxiety-like behavior, decreases social interaction, and engenders MSN subtype-specific plasticity in both sexes. D1-MSNs, but not D2-MSNs, exhibit dendritic atrophy and an increase in excitatory drive. We identified a cluster of coexpressed dendritic morphology genes downregulated selectively in D1-MSNs that are transcriptionally coregulated by E2F1. E2f1 expression in D1-MSNs protects against loss of dendritic complexity, altered physiology, and negative affect-like behaviors caused by fentanyl abstinence. CONCLUSIONS: Our findings indicate that fentanyl abstinence causes unique structural, functional, and molecular changes in nucleus accumbens D1-MSNs that can be targeted to alleviate negative affective symptoms during abstinence.


Asunto(s)
Analgésicos Opioides , Fentanilo , Ratones , Masculino , Femenino , Animales , Fentanilo/metabolismo , Núcleo Accumbens/fisiología , Neuronas/metabolismo , Ratones Endogámicos C57BL , Receptores de Dopamina D1/metabolismo , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA