Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34475209

RESUMEN

Adults can learn to identify nonnative speech sounds with training, albeit with substantial variability in learning behavior. Increases in behavioral accuracy are associated with increased separability for sound representations in cortical speech areas. However, it remains unclear whether individual auditory neural populations all show the same types of changes with learning, or whether there are heterogeneous encoding patterns. Here, we used high-resolution direct neural recordings to examine local population response patterns, while native English listeners learned to recognize unfamiliar vocal pitch patterns in Mandarin Chinese tones. We found a distributed set of neural populations in bilateral superior temporal gyrus and ventrolateral frontal cortex, where the encoding of Mandarin tones changed throughout training as a function of trial-by-trial accuracy ("learning effect"), including both increases and decreases in the separability of tones. These populations were distinct from populations that showed changes as a function of exposure to the stimuli regardless of trial-by-trial accuracy. These learning effects were driven in part by more variable neural responses to repeated presentations of acoustically identical stimuli. Finally, learning effects could be predicted from speech-evoked activity even before training, suggesting that intrinsic properties of these populations make them amenable to behavior-related changes. Together, these results demonstrate that nonnative speech sound learning involves a wide array of changes in neural representations across a distributed set of brain regions.


Asunto(s)
Lóbulo Frontal/fisiología , Aprendizaje/fisiología , Percepción del Habla/fisiología , Estimulación Acústica , Adulto , Encéfalo/fisiología , Potenciales Evocados Auditivos/fisiología , Femenino , Humanos , Lenguaje , Masculino , Persona de Mediana Edad , Fonética , Percepción de la Altura Tonal/fisiología , Habla/fisiología , Acústica del Lenguaje , Lóbulo Temporal/fisiología
2.
J Neurosci ; 42(25): 5034-5046, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35534226

RESUMEN

The dynamics of information flow within the auditory cortical hierarchy associated with speech processing and the emergence of hemispheric specialization remain incompletely understood. To study these questions with high spatiotemporal resolution, intracranial recordings in 29 human neurosurgical patients of both sexes were obtained while subjects performed a semantic classification task. Neural activity was recorded from posteromedial portion of Heschl's gyrus (HGPM) and anterolateral portion of Heschl's gyrus (HGAL), planum temporale (PT), planum polare, insula, and superior temporal gyrus (STG). Responses to monosyllabic words exhibited early gamma power increases and a later suppression of alpha power, envisioned to represent feedforward activity and decreased feedback signaling, respectively. Gamma activation and alpha suppression had distinct magnitude and latency profiles. HGPM and PT had the strongest gamma responses with shortest onset latencies, indicating that they are the earliest auditory cortical processing stages. The origin of attenuated top-down influences in auditory cortex, as indexed by alpha suppression, was in STG and HGAL. Gamma responses and alpha suppression were typically larger to nontarget words than tones. Alpha suppression was uniformly greater to target versus nontarget stimuli. Hemispheric bias for words versus tones and for target versus nontarget words, when present, was left lateralized. Better task performance was associated with increased gamma activity in the left PT and greater alpha suppression in HGPM and HGAL bilaterally. The prominence of alpha suppression during semantic classification and its accessibility for noninvasive electrophysiologic studies suggests that this measure is a promising index of auditory cortical speech processing.SIGNIFICANCE STATEMENT Understanding the dynamics of cortical speech processing requires the use of active tasks. This is the first comprehensive intracranial electroencephalography study to examine cortical activity within the superior temporal plane, lateral superior temporal gyrus, and the insula during a semantic classification task. Distinct gamma activation and alpha suppression profiles clarify the functional organization of feedforward and feedback processing within the auditory cortical hierarchy. Asymmetries in cortical speech processing emerge at early processing stages. Relationships between cortical activity and task performance are interpreted in the context of current models of speech processing. Results lay the groundwork for iEEG studies using connectivity measures of the bidirectional information flow within the auditory processing hierarchy.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Estimulación Acústica , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Habla , Percepción del Habla/fisiología
3.
J Neurophysiol ; 129(2): 342-346, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36576268

RESUMEN

Voice and face processing occur through convergent neural systems that facilitate speaker recognition. Neuroimaging studies suggest that familiar voice processing engages early visual cortex, including the bilateral fusiform gyrus (FG) on the basal temporal lobe. However, what role the FG plays in voice processing and whether it is driven by bottom-up or top-down mechanisms is unresolved. In this study we directly examined neural responses to famous voices and faces in human FG with direct cortical surface recordings (electrocorticography) in epilepsy surgery patients. We tested the hypothesis that neural populations in human FG respond to famous voices and investigated the temporal properties of voice responses in FG. Recordings were acquired from five adult participants during a person identification task using visual and auditory stimuli from famous speakers (U.S. Presidents Barack Obama, George W. Bush, and Bill Clinton). Patients were presented with images of presidents or clips of their voices and asked to identify the portrait/speaker. Our results demonstrate that a subset of face-responsive sites in and near FG also exhibit voice responses that are both lower in magnitude and delayed (300-600 ms) compared with visual responses. The dynamics of voice processing revealed by direct cortical recordings suggests a top-down feedback-mediated response to famous voices in FG that may facilitate speaker identification.NEW & NOTEWORTHY Interactions between auditory and visual cortices play an important role in person identification, but the dynamics of these interactions remain poorly understood. We performed direct brain recordings of fusiform face cortex in human epilepsy patients performing a famous voice naming task, revealing the dynamics of famous voice processing in human fusiform face cortex. The findings support a model of top-down interactions from auditory to visual cortex to facilitate famous voice recognition.


Asunto(s)
Electrocorticografía , Voz , Adulto , Humanos , Encéfalo/fisiología , Lóbulo Temporal/fisiología , Reconocimiento en Psicología/fisiología , Voz/fisiología , Imagen por Resonancia Magnética/métodos
4.
Cereb Cortex ; 31(12): 5435-5448, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34117741

RESUMEN

Elucidating neural signatures of sensory processing across consciousness states is a major focus in neuroscience. Noninvasive human studies using the general anesthetic propofol reveal differential effects on auditory cortical activity, with a greater impact on nonprimary and auditory-related areas than primary auditory cortex. This study used intracranial electroencephalography to examine cortical responses to vowel sequences during induction of general anesthesia with propofol. Subjects were adult neurosurgical patients with intracranial electrodes placed to identify epileptic foci. Data were collected before electrode removal surgery. Stimuli were vowel sequences presented in a target detection task during awake, sedated, and unresponsive states. Averaged evoked potentials (AEPs) and high gamma (70-150 Hz) power were measured in auditory, auditory-related, and prefrontal cortex. In the awake state, AEPs were found throughout studied brain areas; high gamma activity was limited to canonical auditory cortex. Sedation led to a decrease in AEP magnitude. Upon LOC, there was a decrease in the superior temporal gyrus and adjacent auditory-related cortex and a further decrease in AEP magnitude in core auditory cortex, changes in the temporal structure and increased trial-to-trial variability of responses. The findings identify putative biomarkers of LOC and serve as a foundation for future investigations of altered sensory processing.


Asunto(s)
Corteza Auditiva , Vigilia , Estimulación Acústica , Adulto , Corteza Auditiva/fisiología , Electroencefalografía , Electrofisiología , Potenciales Evocados Auditivos/fisiología , Humanos
5.
Cereb Cortex ; 31(2): 1131-1148, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33063098

RESUMEN

The superior temporal sulcus (STS) is a crucial hub for speech perception and can be studied with high spatiotemporal resolution using electrodes targeting mesial temporal structures in epilepsy patients. Goals of the current study were to clarify functional distinctions between the upper (STSU) and the lower (STSL) bank, hemispheric asymmetries, and activity during self-initiated speech. Electrophysiologic properties were characterized using semantic categorization and dialog-based tasks. Gamma-band activity and alpha-band suppression were used as complementary measures of STS activation. Gamma responses to auditory stimuli were weaker in STSL compared with STSU and had longer onset latencies. Activity in anterior STS was larger during speaking than listening; the opposite pattern was observed more posteriorly. Opposite hemispheric asymmetries were found for alpha suppression in STSU and STSL. Alpha suppression in the STS emerged earlier than in core auditory cortex, suggesting feedback signaling within the auditory cortical hierarchy. STSL was the only region where gamma responses to words presented in the semantic categorization tasks were larger in subjects with superior task performance. More pronounced alpha suppression was associated with better task performance in Heschl's gyrus, superior temporal gyrus, and STS. Functional differences between STSU and STSL warrant their separate assessment in future studies.


Asunto(s)
Estimulación Acústica/métodos , Electroencefalografía/métodos , Desempeño Psicomotor/fisiología , Percepción del Habla/fisiología , Lóbulo Temporal/fisiología , Adolescente , Adulto , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/cirugía , Adulto Joven
6.
J Neurosci ; 39(44): 8679-8689, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31533976

RESUMEN

The functional organization of human auditory cortex can be probed by characterizing responses to various classes of sound at different anatomical locations. Along with histological studies this approach has revealed a primary field in posteromedial Heschl's gyrus (HG) with pronounced induced high-frequency (70-150 Hz) activity and short-latency responses that phase-lock to rapid transient sounds. Low-frequency neural oscillations are also relevant to stimulus processing and information flow, however, their distribution within auditory cortex has not been established. Alpha activity (7-14 Hz) in particular has been associated with processes that may differentially engage earlier versus later levels of the cortical hierarchy, including functional inhibition and the communication of sensory predictions. These theories derive largely from the study of occipitoparietal sources readily detectable in scalp electroencephalography. To characterize the anatomical basis and functional significance of less accessible temporal-lobe alpha activity we analyzed responses to sentences in seven human adults (4 female) with epilepsy who had been implanted with electrodes in superior temporal cortex. In contrast to primary cortex in posteromedial HG, a non-primary field in anterolateral HG was characterized by high spontaneous alpha activity that was strongly suppressed during auditory stimulation. Alpha-power suppression decreased with distance from anterolateral HG throughout superior temporal cortex, and was more pronounced for clear compared to degraded speech. This suppression could not be accounted for solely by a change in the slope of the power spectrum. The differential manifestation and stimulus-sensitivity of alpha oscillations across auditory fields should be accounted for in theories of their generation and function.SIGNIFICANCE STATEMENT To understand how auditory cortex is organized in support of perception, we recorded from patients implanted with electrodes for clinical reasons. This allowed measurement of activity in brain regions at different levels of sensory processing. Oscillations in the alpha range (7-14 Hz) have been associated with functions including sensory prediction and inhibition of regions handling irrelevant information, but their distribution within auditory cortex is not known. A key finding was that these oscillations dominated in one particular non-primary field, anterolateral Heschl's gyrus, and were suppressed when subjects listened to sentences. These results build on our knowledge of the functional organization of auditory cortex and provide anatomical constraints on theories of the generation and function of alpha oscillations.


Asunto(s)
Ritmo alfa , Percepción del Habla/fisiología , Lóbulo Temporal/fisiología , Estimulación Acústica , Adulto , Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Potenciales Evocados Auditivos , Femenino , Ritmo Gamma , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
7.
PLoS Biol ; 15(4): e2000219, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28441393

RESUMEN

Learning complex ordering relationships between sensory events in a sequence is fundamental for animal perception and human communication. While it is known that rhythmic sensory events can entrain brain oscillations at different frequencies, how learning and prior experience with sequencing relationships affect neocortical oscillations and neuronal responses is poorly understood. We used an implicit sequence learning paradigm (an "artificial grammar") in which humans and monkeys were exposed to sequences of nonsense words with regularities in the ordering relationships between the words. We then recorded neural responses directly from the auditory cortex in both species in response to novel legal sequences or ones violating specific ordering relationships. Neural oscillations in both monkeys and humans in response to the nonsense word sequences show strikingly similar hierarchically nested low-frequency phase and high-gamma amplitude coupling, establishing this form of oscillatory coupling-previously associated with speech processing in the human auditory cortex-as an evolutionarily conserved biological process. Moreover, learned ordering relationships modulate the observed form of neural oscillatory coupling in both species, with temporally distinct neural oscillatory effects that appear to coordinate neuronal responses in the monkeys. This study identifies the conserved auditory cortical neural signatures involved in monitoring learned sequencing operations, evident as modulations of transient coupling and neuronal responses to temporally structured sensory input.


Asunto(s)
Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Modelos Neurológicos , Neuronas/fisiología , Acoplamiento Neurovascular , Percepción del Habla , Aprendizaje Verbal , Adulto , Animales , Audiometría de Respuesta Evocada , Corteza Auditiva/diagnóstico por imagen , Vías Auditivas/diagnóstico por imagen , Evolución Biológica , Mapeo Encefálico , Femenino , Neuroimagen Funcional , Humanos , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Conducción Nerviosa , Tiempo de Reacción , Especificidad de la Especie , Análisis y Desempeño de Tareas
8.
J Neurosci ; 38(39): 8441-8452, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30126970

RESUMEN

The systems-level mechanisms underlying loss of consciousness (LOC) under anesthesia remain unclear. General anesthetics suppress sensory responses within higher-order cortex and feedback connections, both critical elements of predictive coding hypotheses of conscious perception. Responses to auditory novelty may offer promise as biomarkers for consciousness. This study examined anesthesia-induced changes in auditory novelty responses over short (local deviant [LD]) and long (global deviant [GD]) time scales, envisioned to engage preattentive and conscious levels of processing, respectively. Electrocorticographic recordings were obtained in human neurosurgical patients (3 male, 3 female) from four hierarchical processing levels: core auditory cortex, non-core auditory cortex, auditory-related, and PFC. Stimuli were vowel patterns incorporating deviants within and across stimuli (LD and GD). Subjects were presented with stimuli while awake, and during sedation (responsive) and following LOC (unresponsive) under propofol anesthesia. LD and GD effects were assayed as the averaged evoked potential and high gamma (70-150 Hz) activity. In the awake state, LD and GD effects were present in all recorded regions, with averaged evoked potential effects more broadly distributed than high gamma activity. Under sedation, LD effects were preserved in all regions, except PFC. LOC was accompanied by loss of LD effects outside of auditory cortex. By contrast, GD effects were markedly suppressed under sedation in all regions and were absent following LOC. Thus, although the presence of GD effects is indicative of being awake, its absence is not indicative of LOC. Loss of LD effects in higher-order cortical areas may constitute an alternative biomarker of LOC.SIGNIFICANCE STATEMENT Development of a biomarker that indexes changes in the brain upon loss of consciousness (LOC) under general anesthesia has broad implications for elucidating the neural basis of awareness and clinical relevance to mechanisms of sleep, coma, and disorders of consciousness. Using intracranial recordings from neurosurgery patients, we investigated changes in the activation of cortical networks involved in auditory novelty detection over short (local deviance) and long (global deviance) time scales associated with sedation and LOC under propofol anesthesia. Our results indicate that, whereas the presence of global deviance effects can index awareness, their loss cannot serve as a biomarker for LOC. The dramatic reduction of local deviance effects in areas beyond auditory cortex may constitute an alternative biomarker of LOC.


Asunto(s)
Anestesia General , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Concienciación/fisiología , Corteza Prefrontal/fisiología , Estimulación Acústica , Adulto , Anestésicos Generales/administración & dosificación , Corteza Auditiva/efectos de los fármacos , Percepción Auditiva/efectos de los fármacos , Concienciación/efectos de los fármacos , Ondas Encefálicas , Electrocorticografía , Potenciales Evocados Auditivos/efectos de los fármacos , Femenino , Humanos , Masculino , Corteza Prefrontal/efectos de los fármacos , Adulto Joven
9.
Neuroimage ; 183: 412-424, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30114466

RESUMEN

Under the predictive coding hypothesis, specific spatiotemporal patterns of cortical activation are postulated to occur during sensory processing as expectations generate feedback predictions and prediction errors generate feedforward signals. Establishing experimental evidence for this information flow within cortical hierarchy has been difficult, especially in humans, due to spatial and temporal limitations of non-invasive measures of cortical activity. This study investigated cortical responses to auditory novelty using the local/global deviant paradigm, which engages the hierarchical network underlying auditory predictive coding over short ('local deviance'; LD) and long ('global deviance'; GD) time scales. Electrocorticographic responses to auditory stimuli were obtained in neurosurgical patients from regions of interest (ROIs) including auditory, auditory-related and prefrontal cortex. LD and GD effects were assayed in averaged evoked potential (AEP) and high gamma (70-150 Hz) signals, the former likely dominated by local synaptic currents and the latter largely reflecting local spiking activity. AEP LD effects were distributed across all ROIs, with greatest percentage of significant sites in core and non-core auditory cortex. High gamma LD effects were localized primarily to auditory cortex in the superior temporal plane and on the lateral surface of the superior temporal gyrus (STG). LD effects exhibited progressively longer latencies in core, non-core, auditory-related and prefrontal cortices, consistent with feedforward signaling. The spatial distribution of AEP GD effects overlapped that of LD effects, but high gamma GD effects were more restricted to non-core areas. High gamma GD effects had shortest latencies in STG and preceded AEP GD effects in most ROIs. This latency profile, along with the paucity of high gamma GD effects in the superior temporal plane, suggest that the STG plays a prominent role in initiating novelty detection signals over long time scales. Thus, the data demonstrate distinct patterns of information flow in human cortex associated with auditory novelty detection over multiple time scales.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Electrocorticografía/métodos , Potenciales Evocados Auditivos/fisiología , Ritmo Gamma/fisiología , Adulto , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
10.
Neuroimage ; 152: 78-93, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28254512

RESUMEN

The functional organization of human auditory cortex remains incompletely characterized. While the posteromedial two thirds of Heschl's gyrus (HG) is generally considered to be part of core auditory cortex, additional subdivisions of HG remain speculative. To further delineate the hierarchical organization of human auditory cortex, we investigated regional heterogeneity in the modulation of auditory cortical responses under varying depths of anesthesia induced by propofol. Non-invasive studies have shown that propofol differentially affects auditory cortical activity, with a greater impact on non-core areas. Subjects were neurosurgical patients undergoing removal of intracranial electrodes placed to identify epileptic foci. Stimuli were 50Hz click trains, presented continuously during an awake baseline period, and subsequently, while propofol infusion was incrementally titrated to induce general anesthesia. Electrocorticographic recordings were made with depth electrodes implanted in HG and subdural grid electrodes implanted over superior temporal gyrus (STG). Depth of anesthesia was monitored using spectral entropy. Averaged evoked potentials (AEPs), frequency-following responses (FFRs) and high gamma (70-150Hz) event-related band power were used to characterize auditory cortical activity. Based on the changes in AEPs and FFRs during the induction of anesthesia, posteromedial HG could be divided into two subdivisions. In the most posteromedial aspect of the gyrus, the earliest AEP deflections were preserved and FFRs increased during induction. In contrast, the remainder of the posteromedial HG exhibited attenuation of both the AEP and the FFR. The anterolateral HG exhibited weaker activation characterized by broad, low-voltage AEPs and the absence of FFRs. Lateral STG exhibited limited activation by click trains, and FFRs there diminished during induction. Sustained high gamma activity was attenuated in the most posteromedial portion of HG, and was absent in all other regions. These differential patterns of auditory cortical activity during the induction of anesthesia may serve as useful physiological markers for field delineation. In this study, the posteromedial HG could be parcellated into at least two subdivisions. Preservation of the earliest AEP deflections and FFRs in the posteromedial HG likely reflects the persistence of feedforward synaptic activity generated by inputs from subcortical auditory pathways, including the medial geniculate nucleus.


Asunto(s)
Corteza Auditiva/efectos de los fármacos , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Potenciales Evocados Auditivos/efectos de los fármacos , Propofol/administración & dosificación , Estimulación Acústica , Adulto , Anestésicos Intravenosos/administración & dosificación , Percepción Auditiva/efectos de los fármacos , Electrocorticografía , Femenino , Ritmo Gamma , Humanos , Masculino , Persona de Mediana Edad
11.
J Neurosci ; 35(4): 1513-20, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25632128

RESUMEN

Retrieving the names of friends, loved ones, and famous people is a fundamental human ability. This ability depends on the left anterior temporal lobe (ATL), where lesions can be associated with impaired naming of people regardless of modality (e.g., picture or voice). This finding has led to the idea that the left ATL is a modality-independent convergence region for proper naming. Hypotheses for how proper-name dispositions are organized within the left ATL include both a single modality-independent (heteromodal) convergence region and spatially discrete modality-dependent (unimodal) regions. Here we show direct electrophysiologic evidence that the left ATL is heteromodal for proper-name retrieval. Using intracranial recordings placed directly on the surface of the left ATL in human subjects, we demonstrate nearly identical responses to picture and voice stimuli of famous U.S. politicians during a naming task. Our results demonstrate convergent and robust large-scale neurophysiologic responses to picture and voice naming in the human left ATL. This finding supports the idea of heteromodal (i.e., transmodal) dispositions for proper naming in the left ATL.


Asunto(s)
Ondas Encefálicas/fisiología , Lateralidad Funcional/fisiología , Recuerdo Mental/fisiología , Nombres , Lóbulo Temporal/fisiología , Estimulación Acústica , Adulto , Mapeo Encefálico , Estimulación Eléctrica , Electrodos Implantados , Electroencefalografía , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estimulación Luminosa , Semántica , Análisis Espectral
12.
J Neurophysiol ; 115(6): 3052-61, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27075536

RESUMEN

Naming people, places, and things is a fundamental human ability that is often impaired in patients with language-dominant anterior temporal lobe (ATL) dysfunction or ATL resection as part of epilepsy treatment. Convergent lines of evidence point to the importance of the ATL in name retrieval. The physiologic mechanisms that mediate name retrieval in the ATL, however, are not well understood. The purpose of this study was to characterize the electrophysiologic responses of the human ATL during overt cued naming of famous people and objects. Eight neurosurgical patients with suspected temporal lobe epilepsy who underwent implantation of intracranial electrodes for seizure focus localization were the subjects of this study. Specialized coverage of the ATL was achieved in each subject. The subjects named pictures of U.S. presidents and images of common hand-held tools. Event-related band power was measured for each ATL recording site. Both the left and right ATL demonstrated robust and focal increases in beta-band (14-30 Hz) power during person and tool naming. The onset of this response typically occurred at 400 ms but sometimes as early as 200 ms. Visual naming of famous people and tools is associated with robust and localized modulation of the beta band in both the left and right ATL. Measurement of visual naming responses may provide the groundwork for future mapping modalities to localize eloquent cortex in the ATL.


Asunto(s)
Ritmo beta/fisiología , Epilepsia del Lóbulo Temporal/fisiopatología , Recuerdo Mental/fisiología , Nombres , Lóbulo Temporal/fisiopatología , Adulto , Aprendizaje por Asociación/fisiología , Mapeo Encefálico , Señales (Psicología) , Electrodos Implantados , Electroencefalografía , Epilepsia del Lóbulo Temporal/cirugía , Análisis de Fourier , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estimulación Luminosa , Adulto Joven
13.
Hear Res ; 444: 108972, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359485

RESUMEN

Auditory semantic novelty - a new meaningful sound in the context of a predictable acoustical environment - can probe neural circuits involved in language processing. Aberrant novelty detection is a feature of many neuropsychiatric disorders. This large-scale human intracranial electrophysiology study examined the spatial distribution of gamma and alpha power and auditory evoked potentials (AEP) associated with responses to unexpected words during performance of semantic categorization tasks. Participants were neurosurgical patients undergoing monitoring for medically intractable epilepsy. Each task included repeatedly presented monosyllabic words from different talkers ("common") and ten words presented only once ("novel"). Targets were words belonging to a specific semantic category. Novelty effects were defined as differences between neural responses to novel and common words. Novelty increased task difficulty and was associated with augmented gamma, suppressed alpha power, and AEP differences broadly distributed across the cortex. Gamma novelty effect had the highest prevalence in planum temporale, posterior superior temporal gyrus (STG) and pars triangularis of the inferior frontal gyrus; alpha in anterolateral Heschl's gyrus (HG), anterior STG and middle anterior cingulate cortex; AEP in posteromedial HG, lower bank of the superior temporal sulcus, and planum polare. Gamma novelty effect had a higher prevalence in dorsal than ventral auditory-related areas. Novelty effects were more pronounced in the left hemisphere. Better novel target detection was associated with reduced gamma novelty effect within auditory cortex and enhanced gamma effect within prefrontal and sensorimotor cortex. Alpha and AEP novelty effects were generally more prevalent in better performing participants. Multiple areas, including auditory cortex on the superior temporal plane, featured AEP novelty effect within the time frame of P3a and N400 scalp-recorded novelty-related potentials. This work provides a detailed account of auditory novelty in a paradigm that directly examined brain regions associated with semantic processing. Future studies may aid in the development of objective measures to assess the integrity of semantic novelty processing in clinical populations.


Asunto(s)
Corteza Auditiva , Electroencefalografía , Humanos , Masculino , Femenino , Semántica , Estimulación Acústica , Potenciales Evocados , Corteza Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Imagen por Resonancia Magnética , Mapeo Encefálico
14.
Front Hum Neurosci ; 17: 1334742, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38318272

RESUMEN

Introduction: Cochlear implants (CIs) are the treatment of choice for severe to profound hearing loss. Variability in CI outcomes remains despite advances in technology and is attributed in part to differences in cortical processing. Studying these differences in CI users is technically challenging. Spectrally degraded stimuli presented to normal-hearing individuals approximate input to the central auditory system in CI users. This study used intracranial electroencephalography (iEEG) to investigate cortical processing of spectrally degraded speech. Methods: Participants were adult neurosurgical epilepsy patients. Stimuli were utterances /aba/ and /ada/, spectrally degraded using a noise vocoder (1-4 bands) or presented without vocoding. The stimuli were presented in a two-alternative forced choice task. Cortical activity was recorded using depth and subdural iEEG electrodes. Electrode coverage included auditory core in posteromedial Heschl's gyrus (HGPM), superior temporal gyrus (STG), ventral and dorsal auditory-related areas, and prefrontal and sensorimotor cortex. Analysis focused on high gamma (70-150 Hz) power augmentation and alpha (8-14 Hz) suppression. Results: Chance task performance occurred with 1-2 spectral bands and was near-ceiling for clear stimuli. Performance was variable with 3-4 bands, permitting identification of good and poor performers. There was no relationship between task performance and participants demographic, audiometric, neuropsychological, or clinical profiles. Several response patterns were identified based on magnitude and differences between stimulus conditions. HGPM responded strongly to all stimuli. A preference for clear speech emerged within non-core auditory cortex. Good performers typically had strong responses to all stimuli along the dorsal stream, including posterior STG, supramarginal, and precentral gyrus; a minority of sites in STG and supramarginal gyrus had a preference for vocoded stimuli. In poor performers, responses were typically restricted to clear speech. Alpha suppression was more pronounced in good performers. In contrast, poor performers exhibited a greater involvement of posterior middle temporal gyrus when listening to clear speech. Discussion: Responses to noise-vocoded speech provide insights into potential factors underlying CI outcome variability. The results emphasize differences in the balance of neural processing along the dorsal and ventral stream between good and poor performers, identify specific cortical regions that may have diagnostic and prognostic utility, and suggest potential targets for neuromodulation-based CI rehabilitation strategies.

15.
bioRxiv ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37790527

RESUMEN

Activity-induced gene expression underlies synaptic plasticity and brain function. Here, using molecular sequencing techniques, we define activity-dependent transcriptomic and epigenomic changes at the tissue and single-cell level in the human brain following direct electrical stimulation of the anterior temporal lobe in patients undergoing neurosurgery. Genes related to transcriptional regulation and microglia-specific cytokine activity displayed the greatest induction pattern, revealing a precise molecular signature of neuronal activation in the human brain.

16.
JCI Insight ; 8(22)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37788112

RESUMEN

Postictal apnea is thought to be a major cause of sudden unexpected death in epilepsy (SUDEP). However, the mechanisms underlying postictal apnea are unknown. To understand causes of postictal apnea, we used a multimodal approach to study brain mechanisms of breathing control in 20 patients (ranging from pediatric to adult) undergoing intracranial electroencephalography for intractable epilepsy. Our results indicate that amygdala seizures can cause postictal apnea. Moreover, we identified a distinct region within the amygdala where electrical stimulation was sufficient to reproduce prolonged breathing loss persisting well beyond the end of stimulation. The persistent apnea was resistant to rising CO2 levels, and air hunger failed to occur, suggesting impaired CO2 chemosensitivity. Using es-fMRI, a potentially novel approach combining electrical stimulation with functional MRI, we found that amygdala stimulation altered blood oxygen level-dependent (BOLD) activity in the pons/medulla and ventral insula. Together, these findings suggest that seizure activity in a focal subregion of the amygdala is sufficient to suppress breathing and air hunger for prolonged periods of time in the postictal period, likely via brainstem and insula sites involved in chemosensation and interoception. They further provide insights into SUDEP, may help identify those at greatest risk, and may lead to treatments to prevent SUDEP.


Asunto(s)
Apnea , Muerte Súbita e Inesperada en la Epilepsia , Adulto , Humanos , Niño , Dióxido de Carbono , Hambre , Electroencefalografía/métodos , Convulsiones , Amígdala del Cerebelo/diagnóstico por imagen
17.
Nat Commun ; 14(1): 6264, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805497

RESUMEN

The human brain extracts meaning using an extensive neural system for semantic knowledge. Whether broadly distributed systems depend on or can compensate after losing a highly interconnected hub is controversial. We report intracranial recordings from two patients during a speech prediction task, obtained minutes before and after neurosurgical treatment requiring disconnection of the left anterior temporal lobe (ATL), a candidate semantic knowledge hub. Informed by modern diaschisis and predictive coding frameworks, we tested hypotheses ranging from solely neural network disruption to complete compensation by the indirectly affected language-related and speech-processing sites. Immediately after ATL disconnection, we observed neurophysiological alterations in the recorded frontal and auditory sites, providing direct evidence for the importance of the ATL as a semantic hub. We also obtained evidence for rapid, albeit incomplete, attempts at neural network compensation, with neural impact largely in the forms stipulated by the predictive coding framework, in specificity, and the modern diaschisis framework, more generally. The overall results validate these frameworks and reveal an immediate impact and capability of the human brain to adjust after losing a brain hub.


Asunto(s)
Diásquisis , Semántica , Humanos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética , Lóbulo Temporal/cirugía , Lóbulo Temporal/fisiología
18.
J Acoust Soc Am ; 131(6): EL487-91, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22713026

RESUMEN

Slope and y-intercepts of locus equations have previously been shown to successfully classify place of articulation for English voiced stop consonants when derived from measurements at vowel onset and vowel midpoint. However, listeners are capable of identifying English voiced stops when less than 30 ms of vowel is presented. The present results show that modified locus equation measurements made within the first several pitch periods of a vowel following an English voiced stop were also successful at classifying place of articulation, consistent with the amount of vocalic information necessary for perceptual identification of English voiced stops /b d g/.


Asunto(s)
Fonética , Habla/fisiología , Adulto , Femenino , Humanos , Masculino , Espectrografía del Sonido , Acústica del Lenguaje , Percepción del Habla/fisiología , Factores de Tiempo
19.
Nat Commun ; 13(1): 4909, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35987994

RESUMEN

The primate amygdala is a complex consisting of over a dozen nuclei that have been implicated in a host of cognitive functions, individual differences, and psychiatric illnesses. These functions are implemented through distinct connectivity profiles, which have been documented in animals but remain largely unknown in humans. Here we present results from 25 neurosurgical patients who had concurrent electrical stimulation of the amygdala with intracranial electroencephalography (electrical stimulation tract-tracing; es-TT), or fMRI (electrical stimulation fMRI; es-fMRI), methods providing strong inferences about effective connectivity of amygdala subdivisions with the rest of the brain. We quantified functional connectivity with medial and lateral amygdala, the temporal order of these connections on the timescale of milliseconds, and also detail second-order effective connectivity among the key nodes. These findings provide a uniquely detailed characterization of human amygdala functional connectivity that will inform functional neuroimaging studies in healthy and clinical populations.


Asunto(s)
Amígdala del Cerebelo , Mapeo Encefálico , Amígdala del Cerebelo/fisiología , Animales , Encéfalo , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/fisiología
20.
Brain Topogr ; 24(2): 134-48, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21380858

RESUMEN

Most ecologically natural sensory inputs are not limited to a single modality. While it is possible to use real ecological materials as experimental stimuli to investigate the neural basis of multi-sensory experience, parametric control of such tokens is limited. By using artificial bimodal stimuli composed of approximations to ecological signals, we aim to observe the interactions between putatively relevant stimulus attributes. Here we use MEG as an electrophysiological tool and employ as a measure the steady-state response (SSR), an experimental paradigm typically applied to unimodal signals. In this experiment we quantify the responses to a bimodal audio-visual signal with different degrees of temporal (phase) congruity, focusing on stimulus properties critical to audiovisual speech. An amplitude modulated auditory signal ('pseudo-speech') is paired with a radius-modulated ellipse ('pseudo-mouth'), with the envelope of low-frequency modulations occurring in phase or at offset phase values across modalities. We observe (i) that it is possible to elicit an SSR to bimodal signals; (ii) that bimodal signals exhibit greater response power than unimodal signals; and (iii) that the SSR power at specific harmonics and sensors differentially reflects the congruity between signal components. Importantly, we argue that effects found at the modulation frequency and second harmonic reflect differential aspects of neural coding of multisensory signals. The experimental paradigm facilitates a quantitative characterization of properties of multi-sensory speech and other bimodal computations.


Asunto(s)
Percepción Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Potenciales Evocados Visuales/fisiología , Magnetoencefalografía/métodos , Percepción del Habla/fisiología , Percepción Visual/fisiología , Estimulación Acústica/métodos , Adolescente , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA