Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Pharmacol Res ; 163: 105363, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33285234

RESUMEN

Major depressive disorder (MDD) is the foremost cause of global disability, being responsible for enormous personal, societal, and economical costs. Importantly, existing pharmacological treatments for MDD are partially or totally ineffective in a large segment of patients. As such, the search for novel antidepressant drug targets, anchored on a clear understanding of the etiological and pathophysiological mechanisms underpinning MDD, becomes of the utmost importance. The adenosinergic system, a highly conserved neuromodulatory system, appears as a promising novel target, given both its regulatory actions over many MDD-affected systems and processes. With this goal in mind, we herein review the evidence concerning the role of adenosine as a potential player in pathophysiology and treatment of MDD, combining data from both human and animal studies. Altogether, evidence supports the assertions that the adenosinergic system is altered in both MDD patients and animal models, and that drugs targeting this system have considerable potential as putative antidepressants. Furthermore, evidence also suggests that modifications in adenosine signaling may have a key role in the effects of several pharmacological and non-pharmacological antidepressant treatments with demonstrated efficacy, such as electroconvulsive shock, sleep deprivation, and deep brain stimulation. Lastly, it becomes clear from the available literature that there is yet much to study regarding the role of the adenosinergic system in the pathophysiology and treatment of MDD, and we suggest several avenues of research that are likely to prove fruitful.


Asunto(s)
Adenosina/metabolismo , Trastorno Depresivo Mayor/metabolismo , Animales , Trastorno Depresivo Mayor/tratamiento farmacológico , Humanos
2.
Purinergic Signal ; 16(4): 503-518, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33025424

RESUMEN

Caffeine, a stimulant largely consumed around the world, is a non-selective adenosine receptor antagonist, and therefore caffeine actions at synapses usually, but not always, mirror those of adenosine. Importantly, different adenosine receptors with opposing regulatory actions co-exist at synapses. Through both inhibitory and excitatory high-affinity receptors (A1R and A2R, respectively), adenosine affects NMDA receptor (NMDAR) function at the hippocampus, but surprisingly, there is a lack of knowledge on the effects of caffeine upon this ionotropic glutamatergic receptor deeply involved in both positive (plasticity) and negative (excitotoxicity) synaptic actions. We thus aimed to elucidate the effects of caffeine upon NMDAR-mediated excitatory post-synaptic currents (NMDAR-EPSCs), and its implications upon neuronal Ca2+ homeostasis. We found that caffeine (30-200 µM) facilitates NMDAR-EPSCs on pyramidal CA1 neurons from Balbc/ByJ male mice, an action mimicked, as well as occluded, by 1,3-dipropyl-cyclopentylxantine (DPCPX, 50 nM), thus likely mediated by blockade of inhibitory A1Rs. This action of caffeine cannot be attributed to a pre-synaptic facilitation of transmission because caffeine even increased paired-pulse facilitation of NMDA-EPSCs, indicative of an inhibition of neurotransmitter release. Adenosine A2ARs are involved in this likely pre-synaptic action since the effect of caffeine was mimicked by the A2AR antagonist, SCH58261 (50 nM). Furthermore, caffeine increased the frequency of Ca2+ transients in neuronal cell culture, an action mimicked by the A1R antagonist, DPCPX, and prevented by NMDAR blockade with AP5 (50 µM). Altogether, these results show for the first time an influence of caffeine on NMDA receptor activity at the hippocampus, with impact in neuronal Ca2+ homeostasis.


Asunto(s)
Cafeína/farmacología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Antagonistas de Receptores Purinérgicos P1/farmacología , Transmisión Sináptica/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Glutamina , Hipocampo/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
5.
J Neurochem ; 147(1): 71-83, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29989183

RESUMEN

Elucidating how cannabinoids affect brain function is instrumental for the development of therapeutic tools aiming to mitigate 'on target' side effects of cannabinoid-based therapies. A single treatment with the cannabinoid receptor agonist, WIN 55,212-2, disrupts recognition memory in mice. Here, we evaluate how prolonged, intermittent (30 days) exposure to WIN 55,212-2 (1 mg/kg) alters recognition memory and impacts on brain metabolism and functional connectivity. We show that chronic, intermittent treatment with WIN 55,212-2 disrupts recognition memory (Novel Object Recognition Test) without affecting locomotion and anxiety-like behaviour (Open Field and Elevated Plus Maze). Through 14 C-2-deoxyglucose functional brain imaging we show that chronic, intermittent WIN 55,212-2 exposure induces hypometabolism in the hippocampal dorsal subiculum and in the mediodorsal nucleus of the thalamus, two brain regions directly involved in recognition memory. In addition, WIN 55,212-2 exposure induces hypometabolism in the habenula with a contrasting hypermetabolism in the globus pallidus. Through the application of the Partial Least Squares Regression (PLSR) algorithm to the brain imaging data, we observed that prolonged WIN 55,212-2 administration alters functional connectivity in brain networks that underlie recognition memory, including that between the hippocampus and prefrontal cortex, the thalamus and prefrontal cortex, and between the hippocampus and the perirhinal cortex. In addition, our results support disturbed lateral habenula and serotonin system functional connectivity following WIN 55,212-2 exposure. Overall, this study provides new insight into the functional mechanisms underlying the impact of chronic cannabinoid exposure on memory and highlights the serotonin system as a particularly vulnerable target.


Asunto(s)
Benzoxazinas/toxicidad , Encéfalo/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/toxicidad , Memoria/efectos de los fármacos , Morfolinas/toxicidad , Naftalenos/toxicidad , Red Nerviosa/efectos de los fármacos , Reconocimiento en Psicología/efectos de los fármacos , Animales , Globo Pálido/efectos de los fármacos , Globo Pálido/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Núcleo Talámico Mediodorsal/efectos de los fármacos , Núcleo Talámico Mediodorsal/metabolismo , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos
6.
Cereb Cortex ; 26(3): 1081-95, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25452570

RESUMEN

Adenosine is an endogenous neuromodulator that decreases excitability of hippocampal circuits activating membrane-bound metabotropic A1 receptor (A1R). The presynaptic inhibitory action of adenosine A1R in glutamatergic synapses is well documented, but its influence on inhibitory GABAergic transmission is poorly known. We report that GABAA receptor (GABAAR)-mediated tonic, but not phasic, transmission is suppressed by A1R in hippocampal neurons. Adenosine A1R activation strongly inhibits GABAAR agonist (muscimol)-evoked currents in Cornu Ammonis 1 (CA1) pyramidal neurons and in a specific subpopulation of interneurons expressing axonal cannabinoid receptor type 1. In addition, A1R suppresses tonic GABAAR currents measured in the presence of elevated ambient GABA as well as in naïve slices. The inhibition of GABAergic currents involves both protein kinase A (PKA) and protein kinase C (PKC) signaling pathways and decreases GABAAR δ-subunit expression. On the contrary, no A1R-mediated modulation was detected in phasic inhibitory postsynaptic currents evoked either by afferent electrical stimulation or by spontaneous quantal release. The results show that A1R modulates extrasynaptic rather than synaptic GABAAR-mediated signaling, and that this modulation selectively occurs in hippocampal pyramidal neurons and in a specific subpopulation of inhibitory interneurons. We conclude that modulation of tonic GABAAR signaling by adenosine A1R in specific neuron types may regulate neuronal gain and excitability in the hippocampus.


Asunto(s)
Región CA1 Hipocampal/fisiología , Interneuronas/fisiología , Células Piramidales/fisiología , Receptor de Adenosina A1/metabolismo , Receptores de GABA-A/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Immunoblotting , Inmunohistoquímica , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/citología , Interneuronas/efectos de los fármacos , Masculino , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/fisiología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Técnicas de Placa-Clamp , Proteína Quinasa C/metabolismo , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Ratas Wistar , Técnicas de Cultivo de Tejidos
7.
J Neurochem ; 139(6): 1056-1070, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27778347

RESUMEN

Physiological network functioning in the hippocampus is dependent on a balance between glutamatergic cell excitability and the activity of diverse local circuit neurons that release the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Tuners of neuronal communication such as adenosine, an endogenous modulator of synapses, control hippocampal network operations by regulating excitability. Evidence has been recently accumulating on the influence of adenosine on different aspects of GABAergic transmission to shape hippocampal function. This review addresses how adenosine, through its high-affinity A1 (A1 R) and A2A receptors (A2A R), interferes with different GABA-mediated forms of inhibition in the hippocampus to regulate neuronal excitability. Adenosine-mediated modulation of phasic/tonic inhibitory transmission, of GABA transport mechanisms and its interference with other modulatory systems are discussed together with the putative implications for neuronal function in physiological and pathological conditions. This article is part of a mini review series: 'Synaptic Function and Dysfunction in Brain Diseases'.


Asunto(s)
Adenosina/metabolismo , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Adenosina/farmacología , Animales , Hipocampo/efectos de los fármacos , Humanos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Receptores Purinérgicos P1/metabolismo , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología
8.
Purinergic Signal ; 12(2): 283-94, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26897393

RESUMEN

Brain-derived neurotrophic factor (BDNF) and adenosine are widely recognized as neuromodulators of glutamatergic transmission in the adult brain. Most BDNF actions upon excitatory plasticity phenomena are under control of adenosine A2A receptors (A2ARs). Concerning gamma-aminobutyric acid (GABA)-mediated transmission, the available information refers to the control of GABA transporters. We now focused on the influence of BDNF and the interplay with adenosine on phasic GABAergic transmission. To assess this, we evaluated evoked and spontaneous synaptic currents recorded from CA1 pyramidal cells in acute hippocampal slices from adult rat brains (6 to 10 weeks old). BDNF (10-100 ng/mL) increased miniature inhibitory postsynaptic current (mIPSC) frequency, but not amplitude, as well as increased the amplitude of inhibitory postsynaptic currents (IPSCs) evoked by afferent stimulation. The facilitatory action of BDNF upon GABAergic transmission was lost in the presence of a Trk inhibitor (K252a, 200 nM), but not upon p75(NTR) blockade (anti-p75(NTR) IgG, 50 µg/mL). Moreover, the facilitatory action of BDNF onto GABAergic transmission was also prevented upon A2AR antagonism (SCH 58261, 50 nM). We conclude that BDNF facilitates GABAergic signaling at the adult hippocampus via a presynaptic mechanism that depends on TrkB and adenosine A2AR activation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA1 Hipocampal/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor trkB/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar
9.
Purinergic Signal ; 11(4): 471-80, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26335190

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a disease leading to neuromuscular transmission impairment. A2A adenosine receptor (A2AR) function changes with disease stage, but the role of the A(1) receptors (A1Rs) is unknown and may have a functional cross-talk with A2AR. The role of A1R in the SOD1(G93A) mouse model of ALS in presymptomatic (4-6 weeks old) and symptomatic (12-14 weeks old) phases was investigated by recording endplate potentials (EPPs), miniature endplate potentials (MEPPs), and quantal content (q.c.) of EPPs, from Mg(2+) paralyzed hemidiaphragm preparations. In presymptomatic mice, the A1R agonist, N (6)-cyclopentyladenosine (CPA) (50 nM), decreased mean EPP amplitude, MEPP frequency, and q.c. of EPPs, an effect quantitatively similar to that in age-matched wild-type (WT) mice. However, coactivation of A2AR with CGS 21680 (5 nM) prevented the effects of CPA in WT mice but not in presymptomatic SOD1(G93A) mice, suggestive of A1R/A2AR cross-talk disruption in this phase of ALS. DPCPX (50 nM) impaired CGS 21680 facilitatory action on neuromuscular transmission in WT but not in presymptomatic mice. In symptomatic animals, CPA only inhibited transmission if added in the presence of adenosine deaminase (ADA, 1 U/mL). ADA and DPCPX enhanced more transmission in symptomatic mice than in age-matched WT mice, suggestive of increase in extracellular adenosine during the symptomatic phase of ALS. The data documents that at the neuromuscular junction of presymptomatic SOD1(G93A) mice, there is a loss of A1R-A2AR functional cross-talk, while in symptomatic mice there is increased A1R tonic activation, and that with disease progression, changes in A1R-mediated adenosine modulation may act as aggravating factors during the symptomatic phase of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Unión Neuromuscular/efectos de los fármacos , Receptor de Adenosina A1/genética , Receptor de Adenosina A2A/genética , Superóxido Dismutasa/genética , Transmisión Sináptica/genética , Adenosina/análogos & derivados , Adenosina/farmacología , Agonistas del Receptor de Adenosina A1/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Animales , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/genética , Ratones , Placa Motora/efectos de los fármacos , Fenetilaminas/farmacología , Receptor Cross-Talk/efectos de los fármacos , Receptor de Adenosina A1/efectos de los fármacos , Receptor de Adenosina A2A/efectos de los fármacos , Superóxido Dismutasa/efectos de los fármacos , Superóxido Dismutasa-1 , Transmisión Sináptica/efectos de los fármacos , Xantinas/farmacología
10.
Cereb Cortex ; 24(1): 67-80, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22997174

RESUMEN

Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders.


Asunto(s)
Adenosina Quinasa/fisiología , Adenosina/fisiología , Homeostasis/fisiología , Sinapsis/fisiología , Adenosina Quinasa/genética , Animales , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/fisiología , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Fenómenos Electrofisiológicos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Espacio Extracelular/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Musgosas del Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Purinas/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/fisiología , Receptores de GABA-A/fisiología , Transmisión Sináptica/fisiología
11.
Glia ; 62(8): 1211-26, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24733747

RESUMEN

Astrocytes express a variety of purinergic (P2) receptors, involved in astrocytic communication through fast increases in [Ca(2+) ]i . Of these, the metabotropic ATP receptors (P2Y) regulate cytoplasmic Ca(2+) levels through the PLC-PKC pathway. GABA transporters are a substrate for a number of Ca(2+) -related kinases, raising the possibility that calcium signalling in astrocytes impact the control of extracellular levels of the major inhibitory transmitter in the brain. To access this possibility we tested the influence of P2Y receptors upon GABA transport into astrocytes. Mature primary cortical astroglial-enriched cultures expressed functional P2Y receptors, as evaluated through Ca(2+) imaging, being P2Y1 the predominant P2Y receptor subtype. ATP (100 µM, for 1 min) caused an inhibition of GABA transport through either GAT-1 or GAT-3 transporters, decreasing the Vmax kinetic constant. ATP-induced inhibition of GATs activity was still evident in the presence of adenosine deaminase, precluding an adenosine-mediated effect. This, was mimicked by a specific agonist for the P2Y1,12,13 receptor (2-MeSADP). The effect of 2-MeSADP on GABA transport was blocked by the P2 (PPADS) and P2Y1 selective (MRS2179) receptor antagonists, as well as by the PLC inhibitor (U73122). 2-MeSADP failed to inhibit GABA transport in astrocytes where intracellular calcium had been chelated (BAPTA-AM) or where calcium stores were depleted (α-cyclopiazonic acid, CPA). In conclusion, P2Y1 receptors in astrocytes inhibit GABA transport through a mechanism dependent of P2Y1 -mediated calcium signalling, suggesting that astrocytic calcium signalling, which occurs as a consequence of neuronal firing, may operate a negative feedback loop to enhance extracellular levels of GABA.


Asunto(s)
Astrocitos/fisiología , Transporte Biológico Activo/fisiología , Señalización del Calcio , Corteza Cerebral/fisiología , Receptores Purinérgicos P2Y1/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/efectos de los fármacos , Transporte Biológico Activo/efectos de los fármacos , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Fosfoinositido Fosfolipasa C/metabolismo , Proteína Quinasa C/metabolismo , Ratas Wistar
12.
Hippocampus ; 24(11): 1353-63, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24935659

RESUMEN

Vasoactive intestinal peptide (VIP), an important modulator of hippocampal synaptic transmission, influences exploration and hippocampal-dependent learning in rodents. Homosynaptic long-term depression (LTD) and depotentiation are two plasticity phenomena implicated in learning of behavior flexibility and spatial novelty detection. In this study, we investigated the influence of endogenous VIP on LTD and depotentiation induced by low-frequency stimulation (1 Hz, 900 pulses) of the hippocampal CA1 area in vitro in juvenile and young adult rats, respectively. LTD and depotentiation were enhanced by the VIP receptor antagonist Ac-Tyr(1) , D-Phe(2) GRF (1-29), and the selective VPAC1 receptor antagonist, PG 97-269, but not the selective VPAC2 receptor antagonist, PG 99-465. This action was mimicked by an anti-VIP antibody, suggesting that VIP, and not pituitary adenylate cyclase-activating polypeptide (PACAP), is the endogenous mediator of these effects. Selective inhibition of PAC1 receptors with PACAP (6-38) enhanced depotentiation, but not LTD. VPAC1 receptor blockade also revealed LTD in young adult rats, an effect abolished by the GABAA antagonist bicuculline, evidencing an involvement of GABAergic transmission. We conclude that inhibition of LTD and depotentiation by endogenous VIP occurs through VPAC1 receptor-mediated mechanisms and suggest that disinhibition of pyramidal cell dendrites is the most likely physiological mechanism underlying this effect. As such, VPAC1 receptor ligands may be considered promising pharmacological targets for treatment of cognitive dysfunction in diseases involving altered GABAergic circuits and pathological saturation of LTP/LTD like Down's syndrome and temporal lobe epilepsy.


Asunto(s)
Región CA1 Hipocampal/fisiología , Plasticidad Neuronal/fisiología , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/metabolismo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/crecimiento & desarrollo , Fármacos del Sistema Nervioso Central/farmacología , Estimulación Eléctrica , Masculino , Plasticidad Neuronal/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Ratas Wistar , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos , Péptido Intestinal Vasoactivo/farmacología
13.
Purinergic Signal ; 10(2): 251-67, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24271058

RESUMEN

Brain-derived neurotrophic factor (BDNF) signalling is critical for neuronal development and transmission. Recruitment of TrkB receptors to lipid rafts has been shown to be necessary for the activation of specific signalling pathways and modulation of neurotransmitter release by BDNF. Since TrkB receptors are known to be modulated by adenosine A(2A) receptor activation, we hypothesized that activation of A(2A) receptors could influence TrkB receptor localization among different membrane microdomains. We found that adenosine A(2A) receptor agonists increased the levels of TrkB receptors in the lipid raft fraction of cortical membranes and potentiated BDNF-induced augmentation of phosphorylated TrkB levels in lipid rafts. Blockade of the clathrin-mediated endocytosis with monodansyl cadaverine (100 µM) did not modify the effects of the A(2A) receptor agonists, but significantly impaired BDNF effects on TrkB recruitment to lipid rafts. The effect of A(2A) receptor activation in TrkB localization was mimicked by 5 µM forskolin, an adenylyl cyclase activator. Also, it was blocked by the PKA inhibitors RpcAMPs and PKI-(14-22) and by the Src-family kinase inhibitor PP2. Moreover, removal of endogenous adenosine or disruption of lipid rafts reduced BDNF stimulatory effects on glutamate release from cortical synaptosomes. Lipid raft integrity was also required for the effects of BDNF upon hippocampal long-term potentiation at CA1 synapses. Our data demonstrate, for the first time, a BDNF-independent recruitment of TrkB receptors to lipid rafts, induced by the activation of adenosine A(2A) receptors, with functional consequences for TrkB phosphorylation and BDNF-induced modulation of neurotransmitter release and hippocampal plasticity.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor trkB/metabolismo , Animales , Immunoblotting , Inmunohistoquímica , Microdominios de Membrana/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Transmisión Sináptica/fisiología
14.
Biomolecules ; 14(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540797

RESUMEN

Long-term potentiation (LTP) induced by theta-burst stimulation (TBS) undergoes postweaning developmental changes partially linked to GABAergic circuit maturation. Endogenous vasoactive intestinal peptide (VIP) acting on its VPAC1 receptor strongly influences LTP induced by theta-burst stimulation (TBS), an effect dependent on GABAergic transmission. Although VPAC1 receptor levels are developmentally regulated during embryogenesis, their variation along postweaning development is unknown, as is the VPAC1 modulation of LTP or its relation to hippocampal GABAergic circuit maturation. As such, we investigated how VPAC1 modulation of LTP adjusts from weaning to adulthood along with GABAergic circuit maturation. As described, LTP induced by mild TBS (5 bursts, 4 pulses delivered at 100 Hz) was increasingly greater from weaning to adulthood. The influence of the VPAC1 receptor antagonist PG 97-269 (100 nM) on TBS-induced LTP was much larger in juvenile (3-week-old) than in young adult (6-7-week-old) or adult (12-week-old) rats. This effect was not associated with a developmental decrease in synaptic VPAC1 receptor levels. However, an increase in pre and post-synaptic GABAergic synaptic markers suggests an increase in the number of GABAergic synaptic contacts that is more prominent than the one observed in glutamatergic connections during this period. Conversely, endogenous VPAC2 receptor activation did not significantly influence TBS-induced LTP. VPAC2 receptor levels enhance pronouncedly during postweaning development, but not at synaptic sites. Given the involvement of VIP interneurons in several aspects of hippocampal-dependent learning, neurodevelopmental disorders, and epilepsy, this could provide important insights into the role of VIP modulation of hippocampal synaptic plasticity during normal and altered brain development potentially contributing to epileptogenesis.


Asunto(s)
Potenciación a Largo Plazo , Estimulación Magnética Transcraneal , Ratas , Animales , Potenciación a Largo Plazo/fisiología , Hipocampo , Plasticidad Neuronal , Interneuronas
15.
Purinergic Signal ; 9(3): 433-49, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23657626

RESUMEN

Astrocytes play a key role in modulating synaptic transmission by controlling extracellular gamma-aminobutyric acid (GABA) levels via GAT-1 and GAT-3 GABA transporters (GATs). Using primary cultures of rat astrocytes, we show here that a further level of regulation of GABA uptake occurs via modulation of the GATs by the adenosine A1 (A1R) and A2A (A2AR) receptors. This regulation occurs through A1R-A2AR heteromers that signal via two different G proteins, Gs and Gi/0, and either enhances (A2AR) or inhibits (A1R) GABA uptake. These results provide novel mechanistic insight into how GPCR heteromers signal. Furthermore, we uncover a previously unknown mechanism where adenosine, in a concentration-dependent manner, acts via a heterocomplex of adenosine receptors in astrocytes to significantly contribute to neurotransmission at the tripartite (neuron-glia-neuron) synapse.


Asunto(s)
Astrocitos/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adenosina/metabolismo , Animales , Western Blotting , Femenino , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Células HEK293 , Humanos , Inmunohistoquímica , Masculino , Ensayo de Unión Radioligante , Ratas , Ratas Wistar , Transmisión Sináptica/fisiología , Transfección
16.
J Neurosci ; 31(20): 7412-23, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21593325

RESUMEN

Previous studies have shown that dopamine and galanin modulate cholinergic transmission in the hippocampus, but little is known about the mechanisms involved and their possible interactions. By using resonance energy transfer techniques in transfected mammalian cells, we demonstrated the existence of heteromers between the dopamine D(1)-like receptors (D(1) and D(5)) and galanin Gal(1), but not Gal(2) receptors. Within the D(1)-Gal(1) and D(5)-Gal(1) receptor heteromers, dopamine receptor activation potentiated and dopamine receptor blockade counteracted MAPK activation induced by stimulation of Gal(1) receptors, whereas Gal(1) receptor activation or blockade did not modify D(1)-like receptor-mediated MAPK activation. Ability of a D(1)-like receptor antagonist to block galanin-induced MAPK activation (cross-antagonism) was used as a "biochemical fingerprint" of D(1)-like-Gal(1) receptor heteromers, allowing their identification in the rat ventral hippocampus. The functional role of D(1)-like-Gal receptor heteromers was demonstrated in synaptosomes from rat ventral hippocampus, where galanin facilitated acetylcholine release, but only with costimulation of D(1)-like receptors. Electrophysiological experiments in rat ventral hippocampal slices showed that these receptor interactions modulate hippocampal synaptic transmission. Thus, a D(1)-like receptor agonist that was ineffective when administered alone turned an inhibitory effect of galanin into an excitatory effect, an interaction that required cholinergic neurotransmission. Altogether, our results strongly suggest that D(1)-like-Gal(1) receptor heteromers act as processors that integrate signals of two different neurotransmitters, dopamine and galanin, to modulate hippocampal cholinergic neurotransmission.


Asunto(s)
Fibras Colinérgicas/fisiología , Hipocampo/fisiología , Receptor de Galanina Tipo 1/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D5/fisiología , Transmisión Sináptica/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Luciferasas de Renilla , Masculino , Ratas , Ratas Wistar , Receptor de Galanina Tipo 1/química , Receptores Dopaminérgicos/química , Receptores Dopaminérgicos/fisiología , Receptores de Dopamina D1/química , Receptores de Dopamina D5/química , Receptores de Galanina/química , Receptores de Galanina/fisiología
17.
J Neurosci ; 31(44): 15629-39, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22049406

RESUMEN

Astrocytes play a key role in modulating synaptic transmission by controlling the available extracellular GABA via the GAT-1 and GAT-3 GABA transporters (GATs). Using primary cultures of rat astrocytes, we show here that an additional level of regulation of GABA uptake occurs via modulation of the GATs by the adenosine A(1) (A(1)R) and A(2A) (A(2A)R) receptors. This regulation occurs through a complex of heterotetramers (two interacting homodimers) of A(1)R-A(2A)R that signal via two different G-proteins, G(s) and G(i/o), and either enhances (A(2A)R) or inhibits (A(1)R) GABA uptake. These results provide novel mechanistic insight into how G-protein-coupled receptor heteromers signal. Furthermore, we uncover a previously unknown mechanism in which adenosine, in a concentration-dependent manner, acts via a heterocomplex of adenosine receptors in astrocytes to significantly contribute to neurotransmission at the tripartite (neuron-glia-neuron) synapse.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores de Adenosina A2/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Proteínas Bacterianas/genética , Biotinilación , Células Cultivadas , Corteza Cerebral/citología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , GABAérgicos/farmacología , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Regulación de la Expresión Génica/efectos de los fármacos , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Humanos , Proteínas Luminiscentes/genética , Modelos Biológicos , Ácidos Nipecóticos/farmacología , Fenilisopropiladenosina/metabolismo , Unión Proteica/efectos de los fármacos , Purinérgicos/farmacología , Ratas , Ratas Wistar , Receptores de Adenosina A2/genética , Proteínas Recombinantes/metabolismo , Factores de Tiempo , Transfección/métodos , Tritio/metabolismo
18.
J Biol Chem ; 286(47): 40464-76, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21969376

RESUMEN

The γ-aminobutyric acid (GABA) transporters (GATs) are located in the plasma membrane of neurons and astrocytes and are responsible for termination of GABAergic transmission. It has previously been shown that brain derived neurotrophic factor (BDNF) modulates GAT-1-mediated GABA transport in nerve terminals and neuronal cultures. We now report that BDNF enhances GAT-1-mediated GABA transport in cultured astrocytes, an effect mostly due to an increase in the V(max) kinetic constant. This action involves the truncated form of the TrkB receptor (TrkB-t) coupled to a non-classic PLC-γ/PKC-δ and ERK/MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope was incorporated into the second extracellular loop. An increase in plasma membrane of HA-rGAT-1 as well as of rGAT-1 was observed when both HA-GAT-1-transduced astrocytes and rGAT-1-overexpressing astrocytes were treated with BDNF. The effect of BDNF results from inhibition of dynamin/clathrin-dependent constitutive internalization of GAT-1 rather than from facilitation of the monensin-sensitive recycling of GAT-1 molecules back to the plasma membrane. We therefore conclude that BDNF enhances the time span of GAT-1 molecules at the plasma membrane of astrocytes. BDNF may thus play an active role in the clearance of GABA from synaptic and extrasynaptic sites and in this way influence neuronal excitability.


Asunto(s)
Astrocitos/citología , Factor Neurotrófico Derivado del Encéfalo/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Corteza Cerebral/citología , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adenosina/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ratas , Receptor trkB/metabolismo
19.
Biochim Biophys Acta ; 1808(5): 1340-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20603099

RESUMEN

In this paper we review some novel aspects related to the way adenosine A(2A) receptors (A(2A)R) modulate the action of BDNF or its high-affinity receptors, the TrkB receptors, on synaptic transmission and plasticity, as well as upon cholinergic currents and GABA transporters. Evidence has been accumulating that adenosine A(2A)Rs are required for most of the synaptic actions of BDNF. In some cases, where A(2A)Rs are constitutively activated (e.g. by endogenous extracellular adenosine), the need for A(2A)R activation for the maintenance of the synaptic influences of BDNF can be envisaged from the loss of BDNF effects upon blockade of adenosine A(2A)Rs or upon removal of extracellular adenosine with adenosine deaminase. In some other cases, it is necessary to enhance extracellular adenosine levels (e.g. depolarization) or to further activate A(2A)Rs (e.g. with selective agonists) to trigger a BDNF neuromodulatory role at the synapses. Age- and cell-dependent differences may determine the above two possibilities, but in all cases it is quite clear that there is close interplay between adenosine A(2A)Rs and BDNF TrkB receptors at synapses. The role of lipid rafts in this cross-talk will be discussed. This article is part of a Special Issue entitled: "Adenosine Receptors".


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Microdominios de Membrana/metabolismo , Sistema Nervioso/metabolismo , Receptor de Adenosina A2A/metabolismo , Animales , Humanos , Transmisión Sináptica
20.
Hippocampus ; 22(2): 276-91, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21080412

RESUMEN

Phosphorylation of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by Protein Kinase A (PKA) is known to regulate AMPA receptor (AMPAR) trafficking and stabilization at the postsynaptic membrane, which in turn is one of the key mechanisms by which synaptic transmission and plasticity are tuned. However, not much is known as to how Gs-coupled receptors contribute to endogenous PKA-mediated regulation of AMPA receptor function. Here we report that activation of the excitatory A(2A) adenosine receptor by 2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxamidoadenosine (CGS 21680, 1-30 nM) facilitates AMPA-evoked currents in CA1 pyramidal neurons, by a mechanism dependent on PKA activation, but not on protein synthesis. This modulation of AMPA currents was mimicked by forskolin (1 µM) and did not occur in stratum radiatum interneurons. Superfusion of the A(2A) receptor agonist also caused an increase in the amplitude of miniature excitatory postsynaptic currents (mEPSCs), as well as in the membrane levels of GluR1 subunits phosphorylated at the PKA site (Ser845). The impact of this increase on GluR1-containing AMPA receptor expression was evidenced by the potentiation of LTP at the CA3-CA1 synapse that followed brief activation of A(2A) receptors. We thus propose that in conditions of increased adenosine availability, A(2A) receptor activation is responsible for setting part of the endogenous GluR1 Ser-845 phosphorylation tonus and hence, the availability of the GluR1-containing AMPA receptor extrasynaptic pool for synaptic insertion and reinforcement of synaptic strength.


Asunto(s)
Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Receptor de Adenosina A2A/metabolismo , Receptores AMPA/biosíntesis , Transmisión Sináptica/fisiología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/fisiología , Immunoblotting , Masculino , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores AMPA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA