Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Drug Metab Dispos ; 47(5): 484-492, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30787098

RESUMEN

The accurate prediction of human pharmacokinetics is critically important in modern drug discovery since it drives both pharmacological and toxicological effects. Although significant progress has been made in predicting drug disposition by hepatic drug-metabolizing enzymes, predicting transporter-mediated clearance is still highly uncertain. Furthermore, different approaches are often used to predict clearance with and without transporter involvement, hence the major clearance pathway for a compound must first be determined to know which approach to use. As a result of these challenges, a novel unified method has been developed using cryopreserved suspended human hepatocytes to predict human hepatic clearance for both enzyme- and transporter-mediated mechanisms. This method hypothesizes that, once in vitro metabolic stability is scaled by partition coefficients between hepatocytes and buffer with 4% bovine serum albumin, in vivo clearance can be better predicted. With this method, good in vitro-in vivo correlation of human hepatic clearance has been obtained for a set of 32 structurally diverse compounds, including such transporters as organic anion-transporting polypeptide substrates. The clearance predictions for most compounds are within 3-fold of observed values. This is the first time that multiple compounds result in good in vitro-in vivo extrapolation using an entirely "bottom-up" approach without any empirical scaling factor when transporter-mediated clearance is involved. Potential exceptions are compounds with significant biliary and/or extra-hepatic clearance. The method offers an alternative approach to more accurately predict human hepatic clearance when multiple complex mechanisms are involved.


Asunto(s)
Hepatocitos/metabolismo , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Tasa de Depuración Metabólica/fisiología , Transporte Biológico/fisiología , Humanos , Cinética , Transportadores de Anión Orgánico/metabolismo
2.
Drug Metab Dispos ; 46(4): 346-356, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29330218

RESUMEN

Understanding liver exposure of hepatic transporter substrates in clinical studies is often critical, as it typically governs pharmacodynamics, drug-drug interactions, and toxicity for certain drugs. However, this is a challenging task since there is currently no easy method to directly measure drug concentration in the human liver. Using bosentan as an example, we demonstrate a new approach to estimate liver exposure based on observed systemic pharmacokinetics from clinical studies using physiologically based pharmacokinetic modeling. The prediction was verified to be both accurate and precise using sensitivity analysis. For bosentan, the predicted pseudo steady-state unbound liver-to-unbound systemic plasma concentration ratio was 34.9 (95% confidence interval: 4.2, 50). Drug-drug interaction (i.e., CYP3A and CYP2B6 induction) and inhibition of hepatic transporters (i.e., bile salt export pump, multidrug resistance-associated proteins, and sodium-taurocholate cotransporting polypeptide) were predicted based on the estimated unbound liver tissue or plasma concentrations. With further validation and refinement, we conclude that this approach may serve to predict human liver exposure and complement other methods involving tissue biopsy and imaging.


Asunto(s)
Hígado/metabolismo , Sulfonamidas/sangre , Sulfonamidas/farmacocinética , Transportadoras de Casetes de Unión a ATP/metabolismo , Bosentán , Interacciones Farmacológicas/fisiología , Voluntarios Sanos , Hepatocitos/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/metabolismo
3.
Xenobiotica ; 47(8): 673-681, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27595796

RESUMEN

1. Induction is an important mechanism contributing to drug-drug interactions. It is most commonly evaluated in the human hepatocyte assay over 48-h or 72-h incubation period. However, whether the overall exposure (i.e. Area Under the Curve (AUC) or Cave) or maximum exposure (i.e. Cmax) of the inducer is responsible for the magnitude of subsequent induction has not been thoroughly investigated. Additionally, in vitro induction assays are typically treated as static systems, which could lead to inaccurate induction potency estimation. Hence, European Medicines Agency (EMA) guidance now specifies quantitation of drug levels in the incubation. 2. This work treated the typical in vitro evaluation of rifampin induction as an in vivo system by generating various target engagement profiles, measuring free rifampin concentration over 3 d of incubation and evaluating the impact of these factors on final induction response. 3. This rifampin-based analysis demonstrates that the induction process is driven by time-averaged target engagement (i.e. AUC-driven). Additionally, depletion of rifampin in the incubation medium over 3 d as well as non-specific/specific binding were observed. 4. These findings should help aid the discovery of clinical candidates with minimal induction liability and further expand our knowledge in the quantitative translatability of in vitro induction assays.


Asunto(s)
Inductores del Citocromo P-450 CYP3A/farmacología , Rifampin/farmacología , Área Bajo la Curva , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Inducción Enzimática/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Técnicas In Vitro
4.
J Pharmacokinet Pharmacodyn ; 41(3): 197-209, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24718648

RESUMEN

Physiologically based pharmacokinetic (PBPK) models provide a framework useful for generating credible human pharmacokinetic predictions from data available at the earliest, preclinical stages of pharmaceutical research. With this approach, the pharmacokinetic implications of in vitro data are contextualized via scaling according to independent physiological information. However, in many cases these models also require model-based estimation of additional empirical scaling factors (SFs) in order to accurately recapitulate known human pharmacokinetic behavior. While this practice clearly improves data characterization, the introduction of empirically derived SFs may belie the extrapolative power commonly attributed to PBPK. This is particularly true when such SFs are compound dependent and/or when there are issues with regard to identifiability. As such, when empirically-derived SFs are necessary, a critical evaluation of parameter estimation and model structure are prudent. In this study, we applied a global optimization method to support model-based estimation of a single set of empirical SFs from intravenous clinical data on seven OATP substrates within the context of a previously published PBPK model as well as a revised PBPK model. The revised model with experimentally measured unbound fraction in liver, permeability between liver compartments, and permeability limited distribution to selected tissues improved data characterization. We utilized large-sample approximation and resampling approaches to estimate confidence intervals for the revised model in support of forward predictions that reflect the derived uncertainty. This work illustrates an objective approach to estimating empirically-derived SFs, systematically refining PBPK model performance and conveying the associated confidence in subsequent forward predictions.


Asunto(s)
Transportadores de Anión Orgánico/metabolismo , Farmacocinética , Algoritmos , Células Cultivadas , Intervalos de Confianza , Hepatocitos/metabolismo , Humanos , Modelos Estadísticos
5.
Bioorg Med Chem Lett ; 23(1): 213-7, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23200254

RESUMEN

A series of 4-azaindole oxoacetic acid piperazine benzamides was synthesized and evaluated in an effort to identify an oral HIV-1 attachment inhibitor with the potential to improve upon the pre-clinical profile of BMS-378806 (7), an initial clinical compound. Modifications at the 7-position of the 4-azaindole core modulated potency significantly and SAR showed that certain compounds with a 5-membered ring heteroaryl group at that position were the most potent. Four of the compounds with the best profiles were evaluated in a rat pharmacokinetic model and all had superior oral bioavailability and lower clearance when compared with 7.


Asunto(s)
Fármacos Anti-VIH/química , VIH-1/metabolismo , Indoles/química , Administración Oral , Animales , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/farmacocinética , Disponibilidad Biológica , Evaluación Preclínica de Medicamentos , VIH-1/efectos de los fármacos , Semivida , Humanos , Piperazinas/química , Piperazinas/farmacocinética , Ratas , Relación Estructura-Actividad , Acoplamiento Viral/efectos de los fármacos
6.
ACS Med Chem Lett ; 11(6): 1330-1334, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32551020

RESUMEN

The atypical chemokine receptor CXCR7 has been studied in various disease settings including immunological diseases and heart disease. Efforts to elucidate the role of CXCR7 have been limited by the lack of suitable chemical tools with a range of pharmacological profiles. A high-throughput screen was conducted to discover novel chemical matter with the potential to modulate CXCR7 receptor activity. This led to the identification of a series of diphenylacetamides confirmed in a CXCL12 competition assay indicating receptor binding. Further evaluation of this series revealed a lack of activity in the functional assay measuring ß-arrestin recruitment. The most potent representative, compound 10 (K i = 597 nM), was determined to be an antagonist in the ß-arrestin assay (IC50 = 622 nM). To our knowledge, this is the first reported small molecule ß-arrestin antagonist for CXCR7, useful as an in vitro chemical tool to elucidate the effects of CXCL12 displacement with ß-arrestin antagonism in models for diseases such as cardiac injury and suitable as starting point for hit optimization directed toward an in vivo tool compound for studying CXCR7 receptor pharmacology.

7.
Bioorg Med Chem Lett ; 19(16): 4555-9, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19625189

RESUMEN

Synthesis and structure-activity relationship (SAR) studies on 5-trifluoromethylpyrido[4,3-d]pyrimidin-4(3H)-ones, a novel class of calcium receptor antagonists is described with particular emphasis on optimization of the pharmacokinetic/pharmacodynamic parameters required for a short duration of action compound. Orally-active compounds were identified which displayed the desired animal pharmacology (rapid and transient stimulation of parathyroid hormone) essential for bone anabolic effects.


Asunto(s)
Anabolizantes/química , Pirimidinonas/química , Receptores Sensibles al Calcio/antagonistas & inhibidores , Administración Oral , Anabolizantes/administración & dosificación , Anabolizantes/farmacocinética , Animales , Masculino , Hormona Paratiroidea/metabolismo , Pirimidinonas/administración & dosificación , Pirimidinonas/farmacocinética , Ratas , Ratas Sprague-Dawley , Receptores Sensibles al Calcio/metabolismo , Relación Estructura-Actividad
8.
ACS Med Chem Lett ; 1(5): 219-23, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-24900198

RESUMEN

As part of a strategy to deliver short-acting calcium-sensing receptor (CaSR) antagonists, the metabolically labile thiomethyl functionality was incorporated into the zwitterionic amino alcohol derivative 3 with the hope of increasing human clearance through oxidative metabolism, while delivering a pharmacologically inactive sulfoxide metabolite. The effort led to the identification of thioanisoles 22 and 23 as potent and orally active CaSR antagonists with a rapid onset of action and short pharmacokinetic half-lives, which led to a rapid and transient stimulation of parathyroid hormone in a dose-dependent fashion following oral administration to rats. On the basis of the balance between target pharmacology, safety, and human disposition profiles, 22 and 23 were advanced as clinical candidates for the treatment of osteoporosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA