Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Blood ; 131(13): 1456-1463, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29437590

RESUMEN

We tested baseline positron emission tomography (PET)/computed tomography (CT) as a measure of total tumor burden to better identify high-risk patients with early-stage Hodgkin lymphoma (HL). Patients with stage I-II HL enrolled in the standard arm (combined modality treatment) of the H10 trial (NCT00433433) with available baseline PET and interim PET (iPET2) after 2 cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine were included. Total metabolic tumor volume (TMTV) was measured on baseline PET. iPET2 findings were reported negative (DS1-3) or positive (DS4-5) with the Deauville scale (DS). The prognostic value of TMTV was evaluated and compared with baseline characteristics, staging classifications, and iPET2. A total of 258 patients were eligible: 101 favorable and 157 unfavorable. The median follow-up was 55 months, with 27 progression-free survival (PFS) and 12 overall survival (OS) events. TMTV was a prognosticator of PFS (P < .0001) and OS (P = .0001), with 86% and 84% specificity, respectively. Five-year PFS and OS were 71% and 83% in the high-TMTV (>147 cm3) group (n = 46), respectively, vs 92% and 98% in the low-TMTV group (≤147 cm3). In multivariable analysis including iPET2, TMTV was the only baseline prognosticator compared with the current staging systems proposed by the European Organization for Research and Treatment of Cancer/Groupe d'Etude des Lymphomes de l'Adulte, German Hodgkin Study Group, or National Comprehensive Cancer Network. TMTV and iPET2 were independently prognostic and, combined, identified 4 risk groups: low (TMTV≤147+DS1-3; 5-year PFS, 95%), low-intermediate (TMTV>147+DS1-3; 5-year PFS, 81.6%), high-intermediate (TMTV≤147+DS4-5; 5-year PFS, 50%), and high (TMTV>147+DS4-5; 5-year PFS, 25%). TMTV improves baseline risk stratification of patients with early-stage HL compared with current staging systems and the predictive value of early PET response as well.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Enfermedad de Hodgkin , Adolescente , Adulto , Anciano , Bleomicina/administración & dosificación , Dacarbazina/administración & dosificación , Supervivencia sin Enfermedad , Doxorrubicina/administración & dosificación , Femenino , Estudios de Seguimiento , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/metabolismo , Enfermedad de Hodgkin/mortalidad , Enfermedad de Hodgkin/patología , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Tasa de Supervivencia , Vinblastina/administración & dosificación
2.
J Nucl Med ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089812

RESUMEN

Total metabolic tumor volume (TMTV) is prognostic in lymphoma. However, cutoff values for risk stratification vary markedly, according to the tumor delineation method used. We aimed to create a standardized TMTV benchmark dataset allowing TMTV to be tested and applied as a reproducible biomarker. Methods: Sixty baseline 18F-FDG PET/CT scans were identified with a range of disease distributions (20 follicular, 20 Hodgkin, and 20 diffuse large B-cell lymphoma). TMTV was measured by 12 nuclear medicine experts, each analyzing 20 cases split across subtypes, with each case processed by 3-4 readers. LIFEx or ACCURATE software was chosen according to reader preference. Analysis was performed stepwise: TMTV1 with automated preselection of lesions using an SUV of at least 4 and a volume of at least 3 cm3 with single-click removal of physiologic uptake; TMTV2 with additional removal of reactive bone marrow and spleen with single clicks; TMTV3 with manual editing to remove other physiologic uptake, if required; and TMTV4 with optional addition of lesions using mouse clicks with an SUV of at least 4 (no volume threshold). Results: The final TMTV (TMTV4) ranged from 8 to 2,288 cm3, showing excellent agreement among all readers in 87% of cases (52/60) with a difference of less than 10% or less than 10 cm3 In 70% of the cases, TMTV4 equaled TMTV1, requiring no additional reader interaction. Differences in the TMTV4 were exclusively related to reader interpretation of lesion inclusion or physiologic high-uptake region removal, not to the choice of software. For 5 cases, large TMTV differences (>25%) were due to disagreement about inclusion of diffuse splenic uptake. Conclusion: The proposed segmentation method enabled highly reproducible TMTV measurements, with minimal reader interaction in 70% of the patients. The inclusion or exclusion of diffuse splenic uptake requires definition of specific criteria according to lymphoma subtype. The publicly available proposed benchmark allows comparison of study results and could serve as a reference to test improvements using other segmentation approaches.

3.
Diagnostics (Basel) ; 12(2)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35204515

RESUMEN

The total metabolic tumor volume (TMTV) is a new prognostic factor in lymphomas that could benefit from automation with deep learning convolutional neural networks (CNN). Manual TMTV segmentations of 1218 baseline 18FDG-PET/CT have been used for training. A 3D V-NET model has been trained to generate segmentations with soft dice loss. Ground truth segmentation has been generated using a combination of different thresholds (TMTVprob), applied to the manual region of interest (Otsu, relative 41% and SUV 2.5 and 4 cutoffs). In total, 407 and 405 PET/CT were used for test and validation datasets, respectively. The training was completed in 93 h. In comparison with the TMTVprob, mean dice reached 0.84 in the training set, 0.84 in the validation set and 0.76 in the test set. The median dice scores for each TMTV methodology were 0.77, 0.70 and 0.90 for 41%, 2.5 and 4 cutoff, respectively. Differences in the median TMTV between manual and predicted TMTV were 32, 147 and 5 mL. Spearman's correlations between manual and predicted TMTV were 0.92, 0.95 and 0.98. This generic deep learning model to compute TMTV in lymphomas can drastically reduce computation time of TMTV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA