Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38396887

RESUMEN

Kidney transplantation is preferred for end-stage renal disease. The current gold standard for kidney preservation is static cold storage (SCS) at 4 °C. However, SCS contributes to renal graft damage through ischemia-reperfusion injury (IRI). We previously reported renal graft protection after SCS with a hydrogen sulfide donor, sodium thiosulfate (STS), at 4 °C. Therefore, this study aims to investigate whether SCS at 10 °C with STS and Hemopure (blood substitute), will provide similar protection. Using in vitro model of IRI, we subjected rat renal proximal tubular epithelial cells to hypoxia-reoxygenation for 24 h at 10 °C with or without STS and measured cell viability. In vivo, we preserved 36 donor kidneys of Lewis rats for 24 h in a preservation solution at 10 °C supplemented with STS, Hemopure, or both followed by transplantation. Tissue damage and recipient graft function parameters, including serum creatinine, blood urea nitrogen, urine osmolality, and glomerular filtration rate (GFR), were evaluated. STS-treated proximal tubular epithelial cells exhibited enhanced viability at 10 °C compared with untreated control cells (p < 0.05). Also, STS and Hemopure improved renal graft function compared with control grafts (p < 0.05) in the early time period after the transplant, but long-term function did not reach significance. Overall, renal graft preservation at 10 °C with STS and Hemopure supplementation has the potential to enhance graft function and reduce kidney damage, suggesting a novel approach to reducing IRI and post-transplant complications.


Asunto(s)
Hemoglobinas , Trasplante de Riñón , Daño por Reperfusión , Tiosulfatos , Ratas , Animales , Preservación de Órganos , Supervivencia de Injerto , Ratas Endogámicas Lew , Riñón , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control
2.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762319

RESUMEN

The global donor kidney shortage crisis has necessitated the use of suboptimal kidneys from donors-after-cardiac-death (DCD). Using an ex vivo porcine model of DCD kidney transplantation, the present study investigates whether the addition of hydrogen sulfide donor, AP39, to University of Wisconsin (UW) solution improves graft quality. Renal pedicles of male pigs were clamped in situ for 30 min and the ureters and arteries were cannulated to mimic DCD. Next, both donor kidneys were nephrectomized and preserved by static cold storage in UW solution with or without AP39 (200 nM) at 4 °C for 4 h followed by reperfusion with stressed autologous blood for 4 h at 37 °C using ex vivo pulsatile perfusion apparatus. Urine and arterial blood samples were collected hourly during reperfusion. After 4 h of reperfusion, kidneys were collected for histopathological analysis. Compared to the UW-only group, UW+AP39 group showed significantly higher pO2 (p < 0.01) and tissue oxygenation (p < 0.05). Also, there were significant increases in urine production and blood flow rate, and reduced levels of urine protein, serum creatinine, blood urea nitrogen, plasma Na+ and K+, as well as reduced intrarenal resistance in the UW+AP39 group compared to the UW-only group. Histologically, AP39 preserved renal structure by reducing the apoptosis of renal tubular cells and immune cell infiltration. Our finding could lay the foundation for improved graft preservation and reduce the increasingly poor outcomes associated with DCD kidney transplantation.


Asunto(s)
Sulfuro de Hidrógeno , Trasplante de Riñón , Humanos , Masculino , Porcinos , Animales , Sulfuro de Hidrógeno/farmacología , Criopreservación , Mitocondrias
3.
Transplant Direct ; 8(10): e1382, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36204184

RESUMEN

Evidence suggests that nutritional supplementation during normothermic ex vivo perfusion improves organ preservation. However, it is unclear whether the same benefit is observed during room temperature (subnormothermic) oxygenated perfusion. In this study, we tested the impact of providing complete nutrition during subnormothermic perfusion on kidney outcomes. Methods: Porcine kidneys were recovered after 30 min of cross clamping the renal artery in situ to simulate warm ischemic injury. After flushing with preservation solution, paired kidneys were cannulated and randomly assigned to perfusion with either (1) hemoglobin-carrier hemoglobin-based oxygen carrier or (2) hemoglobin-based oxygen carrier + total parenteral nutrition (TPN) for 12 h at 22 °C. To mimic reperfusion injury, all kidneys were reperfused with whole blood for an additional 4 h at 37 °C. Kidney function and damage were assessed. Results: Kidneys preserved with or without TPN performed equally well, showing similar renal function postreperfusion. Histological findings indicated similar levels of damage from apoptosis staining and acute tubular necrosis scores in both groups. Additionally, markers of renal damage (KIM-1) and inflammation (IL-6; high-mobility group box 1) were similar between the groups. Conclusions: Unlike other studies using normothermic oxygenated perfusion platforms, nutritional supplementation does not appear to provide any additional benefit during ex vivo kidney preservation over 12 h evaluated by whole blood-based reperfusion method at subnormothermic temperature. Further study should include a kidney autotransplant model to assess the role of TPN in vivo.

4.
J Invest Surg ; 35(1): 104-110, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33400888

RESUMEN

Objective We have previously demonstrated benefits of kidney preservation utilizing an oxygenated subnormothermic ex vivo perfusion platform. Herein, we aim to compare pulsatile versus centrifugal (steady and uniform flow) perfusion with the goal of optimizing renal preservation with these devices. Materials and methods: Pig kidneys were procured following 30 min of warm ischemia by cross-clamping both renal arteries. Paired kidneys were cannulated and underwent either: oxygenated pulsatile or centrifugal perfusion using a hemoglobin oxygen carrier at room temperature with our ex vivo machine perfusion platform for 4 hr. Kidneys were reperfused with whole blood for 4 hr at 37° C. Renal function, pathology and evidence of inflammation were assessed post-perfusion. Results: Both pump systems performed equally well with organs exhibiting similar renal blood flow, and function post-reperfusion. Histologic evidence of renal damage using apoptosis staining and acute tubular necrosis scores was similar between groups. This was corroborated with urinary assessment of renal damage (NGAL 1) and inflammation (IL-6), as levels were similar between groups. Conclusion: In our porcine model with added warm ischemia simulating the effects of reperfusion after transplantation, pulsatile perfusion yielded similar renal protection compared with centrifugal perfusion kidney preservation. Both methods of perfusion can be used in ex vivo kidney perfusion systems.


Asunto(s)
Trasplante de Riñón , Riñón , Preservación de Órganos , Animales , Perfusión , Flujo Pulsátil , Porcinos
5.
Biomolecules ; 11(3)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802753

RESUMEN

Cold preservation is the standard of care for renal grafts. However, research on alternatives like perfusion at higher temperatures and supplementing preservation solutions with hydrogen sulfide (H2S) has gained momentum. In this study, we investigated whether adding H2S donor AP39 to porcine blood during subnormothermic perfusion at 21 °C improves renal graft outcomes. Porcine kidneys were nephrectomized after 30 min of clamping the renal pedicles and treated to 4 h of static cold storage (SCS) on ice or ex vivo subnormothermic perfusion at 21 °C with autologous blood alone (SNT) or with AP39 (SNTAP). All kidneys were reperfused ex vivo with autologous blood at 37 °C for 4 h. Urine output, histopathology and RNAseq were used to evaluate the renal graft function, injury and gene expression profiles, respectively. The SNTAP group exhibited significantly higher urine output than other groups during preservation and reperfusion, along with significantly lower apoptotic injury compared to the SCS group. The SNTAP group also exhibited differential pro-survival gene expression patterns compared to the SCS (downregulation of pro-apoptotic genes) and SNT (downregulation of hypoxia response genes) groups. Subnormothermic perfusion at 21 °C with H2S-supplemented blood improves renal graft outcomes. Further research is needed to facilitate the clinical translation of this approach.


Asunto(s)
Frío , Sulfuro de Hidrógeno/administración & dosificación , Riñón/metabolismo , Soluciones Preservantes de Órganos/administración & dosificación , Preservación de Órganos/métodos , Perfusión/métodos , Animales , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Riñón/efectos de los fármacos , Riñón/fisiopatología , RNA-Seq/métodos , Porcinos , Temperatura
6.
Transplantation ; 104(3): 482-489, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31568396

RESUMEN

BACKGROUND: The optimal method of oxygen delivery to donor kidneys during ex vivo machine perfusion has not been established. We have recently reported the beneficial effects of subnormothermic (22°C) blood perfusion in the preservation of porcine donation after circulatory death kidneys. Since using blood as a clinical perfusate has limitations, including matching availability and potential presence of pathogen, we sought to assess hemoglobin-based oxygen carrier (HBOC-201) in oxygen delivery to the kidney for renal protection. METHODS: Pig kidneys (n = 5) were procured after 30 minutes of warm in situ ischemia by cross-clamping the renal arteries. Organs were flushed with histidine tryptophan ketoglutarate solution and subjected to static cold storage or pulsatile perfusion with an RM3 pump at 22°C for 4 hours with HBOC-201 and blood. Thereafter, kidneys were reperfused with normothermic (37°C) oxygenated blood for 4 hours. Blood and urine were subjected to biochemical analysis. Total urine output, urinary protein, albumin/creatinine ratio, flow rate, resistance were measured. Acute tubular necrosis, apoptosis, urinary kidney damage markers, neutrophil gelatinase-associated lipocalin 1, and interleukin 6 were also assessed. RESULTS: HBOC-201 achieved tissues oxygen saturation equivalent to blood. Furthermore, upon reperfusion, HBOC-201 treated kidneys had similar renal blood flow and function compared with blood-treated kidneys. Histologically, HBOC-201 and blood-perfused kidneys had vastly reduced acute tubular necrosis scores and degrees of terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling staining versus kidneys treated with cold storage. Urinary damage markers and IL6 levels were similarly reduced by both blood and HBOC-201. CONCLUSIONS: HBOC-201 is an excellent alternative to blood as an oxygen-carrying molecule in an ex vivo subnormothermic machine perfusion platform in kidneys.


Asunto(s)
Trasplante de Riñón/efectos adversos , Soluciones Preservantes de Órganos/administración & dosificación , Preservación de Órganos/métodos , Perfusión/métodos , Daño por Reperfusión/prevención & control , Animales , Sustitutos Sanguíneos/administración & dosificación , Sustitutos Sanguíneos/química , Modelos Animales de Enfermedad , Hemoglobinas/administración & dosificación , Hemoglobinas/química , Humanos , Preservación de Órganos/instrumentación , Soluciones Preservantes de Órganos/química , Oxígeno/análisis , Oxígeno/metabolismo , Perfusión/instrumentación , Daño por Reperfusión/etiología , Sus scrofa , Isquemia Tibia/efectos adversos
7.
Kidney Int Rep ; 4(9): 1323-1333, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31517151

RESUMEN

INTRODUCTION: The current methods of preserving donor kidneys in nonoxygenated cold conditions minimally protect the kidney against ischemia-reperfusion injury (IRI), a major source of complications in clinical transplantation. However, preserving kidneys with oxygenated perfusion is not currently feasible due to the lack of an ideal perfusion mechanism that facilitates perfusion with blood at warm temperature. Here, we have designed an innovative renal pump circuit system that can perfuse blood or acellular oxygen carrier under flexible temperatures, pressures, and oxygenation. We have tested this apparatus to study optimal conditions of storage of our porcine model of donation after cardiac death (DCD) kidneys. METHODS: Porcine kidneys were retrieved after 30 minutes of cross-clamping renal pedicles in situ. Cessation of blood mimics postcardiac death in humans and simulates DCD warm ischemic injury. Procured kidneys were flushed and subjected to static cold storage (SCS) for 4 hours. For warm perfusion, kidneys were cannulated for pulsatile oxygenated perfusion with blood:PlasmaLyte for 4 hours at 15 °C, 22 °C, and 37 °C. To mimic posttransplant scenario, all kidneys were reperfused with blood for an additional 4 hours at 37 °C. RESULTS: Compared with all other groups, 22 °C perfusion resulted in significant reduction of acute tubular necrosis (ATN), apoptosis, kidney damage markers, Toll-like receptor signaling, and cytokine production. It was associated with maximal renal blood flow and urine output. Kidneys stored at 15 °C thrombosed within 2 hours under this condition. Martius Scarlet Blue staining confirmed that 22 °C was the optimal temperature to minimize hemorrhage and blood clots. CONCLUSION: Our novel study shows that oxygenated perfusion at near-room-temperature provides optimal donor kidney storage conditions.

8.
Transplantation ; 102(7): 1066-1074, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29677080

RESUMEN

BACKGROUND: Carbon monoxide (CO) inhalation protects organ by reducing inflammation and cell death during transplantation processes in animal model. However, using CO in clinical transplantation is difficult due to its delivery in a controlled manner. A manganese-containing CO releasing molecules (CORM)-401 has recently been synthesized which can efficiently deliver 3 molar equivalents of CO. We report the ability of this anti-inflammatory CORM-401 to reduce ischemia reperfusion injury associated with prolonged cold storage of renal allografts obtained from donation after circulatory death in a porcine model of transplantation. METHODS: To stimulate donation after circulatory death condition, kidneys from large male Landrace pig were retrieved after 1 hour warm ischemia in situ by cross-clamping the renal pedicle. Procured kidneys, after a brief flushing with histidine-tryptophan-ketoglutarate solution were subjected to pulsatile perfusion at 4°C with University of Wisconsin solution for 4 hours and both kidneys were treated with either 200 µM CORM-401 or inactive CORM-401, respectively. Kidneys were then reperfused with normothermic isogeneic porcine blood through oxygenated pulsatile perfusion for 10 hours. Urine was collected, vascular flow was assessed during reperfusion and histopathology was assessed after 10 hours of reperfusion. RESULTS: We have found that CORM-401 administration reduced urinary protein excretion, attenuated kidney damage markers (kidney damage marker-1 and neutrophil gelatinase-associated lipocalin), and reduced ATN and dUTP nick end labeling staining in histopathologic sections. CORM-401 also prevented intrarenal hemorrhage and vascular clotting during reperfusion. Mechanistically, CORM-401 appeared to exert anti-inflammatory actions by suppressing Toll-like receptors 2, 4, and 6. CONCLUSIONS: Carbon monoxide releasing molecules-401 provides renal protection after cold storage of kidneys and provides a novel clinically relevant ex vivo organ preservation strategy.


Asunto(s)
Monóxido de Carbono/farmacología , Trasplante de Riñón/efectos adversos , Manganeso/química , Preservación de Órganos/métodos , Daño por Reperfusión/prevención & control , Adenosina/química , Aloinjertos/patología , Alopurinol/química , Animales , Monóxido de Carbono/metabolismo , Isquemia Fría/efectos adversos , Glutatión/química , Insulina/química , Riñón/patología , Masculino , Modelos Animales , Preservación de Órganos/instrumentación , Soluciones Preservantes de Órganos/química , Rafinosa/química , Daño por Reperfusión/etiología , Daño por Reperfusión/patología , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA