RESUMEN
Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.
Asunto(s)
Evolución Molecular , Genoma/genética , Poríferos/genética , Animales , Apoptosis/genética , Adhesión Celular/genética , Ciclo Celular/genética , Polaridad Celular/genética , Proliferación Celular , Genes/genética , Genómica , Humanos , Inmunidad Innata/genética , Modelos Biológicos , Neuronas/metabolismo , Fosfotransferasas/química , Fosfotransferasas/genética , Filogenia , Poríferos/anatomía & histología , Poríferos/citología , Poríferos/inmunología , Análisis de Secuencia de ADN , Transducción de Señal/genéticaRESUMEN
The nerve cell is a eumetazoan (cnidarians and bilaterians) synapomorphy [1]; this cell type is absent in sponges, a more ancient phyletic lineage. Here, we demonstrate that despite lacking neurons, the sponge Amphimedon queenslandica expresses the Notch-Delta signaling system and a proneural basic helix loop helix (bHLH) gene in a manner that resembles the conserved molecular mechanisms of primary neurogenesis in bilaterians. During Amphimedon development, a field of subepithelial cells expresses the Notch receptor, its ligand Delta, and a sponge bHLH gene, AmqbHLH1. Cells that migrate out of this field express AmqDelta1 and give rise to putative sensory cells that populate the larval epithelium. Phylogenetic analysis suggests that AmqbHLH1 is descendent from a single ancestral bHLH gene that later duplicated to produce the atonal/neurogenin-related bHLH gene families, which include most bilaterian proneural genes [2]. By way of functional studies in Xenopus and Drosophila, we demonstrate that AmqbHLH1 has a strong proneural activity in both species with properties displayed by both neurogenin and atonal genes. From these results, we infer that the bilaterian neurogenic circuit, comprising proneural atonal-related bHLH genes coupled with Notch-Delta signaling, was functional in the very first metazoans and was used to generate an ancient sensory cell type.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Filogenia , Poríferos/genética , Transducción de Señal , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Secuencia Conservada , Drosophila , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Duplicación de Gen , Secuencias Hélice-Asa-Hélice , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Poríferos/crecimiento & desarrollo , Poríferos/metabolismo , Receptores Notch/metabolismo , XenopusRESUMEN
Wnt-signalling plays a critical role in animal development, and its misregulation results in serious human diseases, including cancer. While the Wnt pathway is well studied in eumetazoan models, little is known about the evolutionary origin of its components and their functions. Here, we have identified key machinery of the Wnt-ß-catenin (canonical)-signalling pathway that is encoded in the Amphimedon queenslandica (Demospongiae; Porifera) genome, namely Wnt, Fzd, SFRP, Lrp5/6, Dvl, Axin, APC, GSK3, ß-catenin, Tcf, and Groucho. Most of these genes are not detected in the choanoflagellate and other nonmetazoan eukaryotic genomes. In contrast, orthologues of some of key components of bilaterian Wnt-planar cell polarity and Wnt/Ca(2+) are absent from the Amphimedon genome, suggesting these pathways evolved after demosponge and eumetazoan lineages diverged. Sequence analysis of the identified proteins of the Wnt-ß-catenin pathway has revealed the presence of most of the conserved motifs and domains responsible for protein-protein and protein-DNA interactions in vertebrates and insects. However, several protein-protein interaction domains appear to be absent from the Amphimedon Axin and APC proteins. These are also missing from their orthologues in the cnidarian Nematostella vectensis, suggesting that they are bilaterian novelties. All of the analyzed Wnt pathway genes are expressed in specific patterns during Amphimedon embryogenesis. Most are expressed in especially striking and highly dynamic patterns during formation of a simple organ-like larval structure, the pigment ring. Overall, our results indicate that the Wnt-ß-catenin pathway was used in embryonic patterning in the last common ancestor of living metazoans. Subsequently, gene duplications and a possible increase in complexity of protein interactions have resulted in the precisely regulated Wnt pathway observed in extant bilaterian animals.
Asunto(s)
Poríferos/metabolismo , Proteínas Wnt/metabolismo , Animales , Evolución Biológica , Tipificación del Cuerpo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Receptores Frizzled/química , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulación del Desarrollo de la Expresión Génica , Filogenia , Poríferos/embriología , Poríferos/genética , Estructura Terciaria de Proteína , Transducción de Señal , Proteínas Wnt/genética , Proteínas Wnt/fisiología , beta Catenina/metabolismoRESUMEN
Cubozoa (Cnidaria: Medusozoa) represents a small clade of approximately 50 described species, some of which cause serious human envenomations. Our understanding of the evolutionary history of Cubozoa has been limited by the lack of a sound phylogenetic hypothesis for the group. Here, we present a comprehensive cubozoan phylogeny based on ribosomal genes coding for near-complete nuclear 18S (small subunit) and 28S (large subunit) and partial mitochondrial 16S. We discuss the implications of this phylogeny for our understanding of cubozoan venom evolution, biogeography and life-history evolution. Our phylogenetic hypothesis suggests that: (i) the last common ancestor of Carybdeida probably possessed the mechanism(s) underlying Irukandji syndrome, (ii) deep divergences between Atlantic and Indo-Pacific clades may be explained by ancient vicariant events, and (iii) sexual dimorphism evolved a single time in concert with complex sexual behaviour. Furthermore, several cubozoan taxa are either para- or polyphyletic, and we address some of these taxonomic issues by designating a new family, Carukiidae, a new genus, Copula, and by redefining the families Tamoyidae and Tripedaliidae. Lastly, cubozoan species identities have long been misunderstood and the data presented here support many of the recent scientific descriptions of cubozoan species. However, the results of a phylogeographic analysis of Alatina moseri from Hawai'i and Alatina mordens from Australia indicate that these two nominal species represent a single species that has maintained metapopulation cohesion by natural or anthropogenic dispersal.
Asunto(s)
Venenos de Cnidarios/genética , Cubomedusas/clasificación , Cubomedusas/genética , Evolución Molecular , Filogenia , Animales , Cubomedusas/crecimiento & desarrollo , Cubomedusas/patogenicidad , ADN Mitocondrial/genética , ADN Ribosómico/análisis , Geografía , Humanos , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Of the 20 or so signal transduction pathways that orchestrate cell-cell interactions in metazoans, seven are involved during development. One of these is the Notch signalling pathway which regulates cellular identity, proliferation, differentiation and apoptosis via the developmental processes of lateral inhibition and boundary induction. In light of this essential role played in metazoan development, we surveyed a wide range of eukaryotic genomes to determine the origin and evolution of the components and auxiliary factors that compose and modulate this pathway. RESULTS: We searched for 22 components of the Notch pathway in 35 different species that represent 8 major clades of eukaryotes, performed phylogenetic analyses and compared the domain compositions of the two fundamental molecules: the receptor Notch and its ligands Delta/Jagged. We confirm that a Notch pathway, with true receptors and ligands is specific to the Metazoa. This study also sheds light on the deep ancestry of a number of genes involved in this pathway, while other members are revealed to have a more recent origin. The origin of several components can be accounted for by the shuffling of pre-existing protein domains, or via lateral gene transfer. In addition, certain domains have appeared de novo more recently, and can be considered metazoan synapomorphies. CONCLUSION: The Notch signalling pathway emerged in Metazoa via a diversity of molecular mechanisms, incorporating both novel and ancient protein domains during eukaryote evolution. Thus, a functional Notch signalling pathway was probably present in Urmetazoa.
Asunto(s)
Evolución Molecular , Filogenia , Receptores Notch/genética , Animales , Proteínas de Unión al Calcio/genética , Células Eucariotas , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de ADN , Proteínas Serrate-Jagged , Transducción de Señal/genéticaRESUMEN
Gastropods are members of the Spiralia, a diverse group of invertebrates that share a common early developmental program, which includes spiral cleavage and a larval trochophore stage. The spiral cleavage program results in the division of the embryo into four quadrants. Specification of the dorsal (D) quadrant is intimately linked with body plan organization and in equally cleaving gastropods occurs when one of the vegetal macromeres makes contact with overlying micromeres and receives an inductive signal that activates a MAPK signaling cascade. Following the induction of the 3D macromere, the embryo begins to gastrulate and assumes a bilateral cleavage pattern. Here we inhibit MAPK activation in 3D with U0126 and examine its effect on the formation and patterning of the trochophore, using a suite of territory-specific markers. The head (pretrochal) region appears to maintain quadri-radial symmetry in U0126-treated embryos, supporting a role for MAPK signaling in 3D in establishing dorsoventral polarity in this region. Posterior (posttrochal) structures - larval musculature, shell and foot--fail to develop in MAPK inhibited trochophores. Inhibition of 3D specification by an alternative method--monensin treatment--yields similar abnormal trochophores. However, genes that are normally expressed in the ectodermal structures (shell and foot) are detected in U0126- and monensin-perturbed larvae in patterns that suggest that this region has latent dorsoventral polarity that is manifested even in the absence of D quadrant specification.
Asunto(s)
Tipificación del Cuerpo , Gastrópodos/embriología , Gastrópodos/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Proteínas Morfogenéticas Óseas/química , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Fetales/química , Proteínas Fetales/metabolismo , Gastrulación , Estructura Terciaria de Proteína , Proteínas de Dominio T Box/química , Proteínas de Dominio T Box/metabolismoRESUMEN
The nervous systems of cnidarians, pre-bilaterian animals that diverged close to the base of the metazoan radiation, are structurally simple and thus have great potential to reveal fundamental principles of neural circuits. Unfortunately, cnidarians have thus far been relatively intractable to electrophysiological and genetic techniques and consequently have been largely passed over by neurobiologists. However, recent advances in molecular and imaging methods are fueling a renaissance of interest in and research into cnidarians nervous systems. Here, we review current knowledge on the nervous systems of cnidarian species and propose that researchers should seize this opportunity and undertake the study of members of this phylum as strategic experimental systems with great basic and translational relevance for neuroscience.
Asunto(s)
Axones/patología , Cnidarios/crecimiento & desarrollo , Sistema Nervioso/crecimiento & desarrollo , Neuronas/citología , Neurotransmisores/metabolismo , Animales , Evolución Biológica , HumanosRESUMEN
In many marine invertebrates, larval metamorphosis is induced by environmental cues that activate sensory receptors and signalling pathways. Nitric oxide (NO) is a gaseous signalling molecule that regulates metamorphosis in diverse bilaterians. In most cases NO inhibits or represses this process, although it functions as an activator in some species. Here we demonstrate that NO positively regulates metamorphosis in the poriferan Amphimedon queenslandica. High rates of A. queenslandica metamorphosis normally induced by a coralline alga are inhibited by an inhibitor of nitric oxide synthase (NOS) and by a NO scavenger. Consistent with this, an artificial donor of NO induces metamorphosis even in the absence of the alga. Inhibition of the ERK signalling pathway prevents metamorphosis in concert with, or downstream of, NO signalling; a NO donor cannot override the ERK inhibitor. NOS gene expression is activated late in embryogenesis and in larvae, and is enriched in specific epithelial and subepithelial cell types, including a putative sensory cell, the globular cell; DAF-FM staining supports these cells being primary sources of NO. Together, these results are consistent with NO playing an activating role in induction of A. queenslandica metamorphosis, evidence of its highly conserved regulatory role in metamorphosis throughout the Metazoa.
Asunto(s)
Organismos Acuáticos/metabolismo , Metamorfosis Biológica/genética , Óxido Nítrico/metabolismo , Poríferos/metabolismo , Animales , Organismos Acuáticos/genética , Evolución Biológica , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Estadios del Ciclo de Vida/genética , Óxido Nítrico/genética , Óxido Nítrico Sintasa/genética , Poríferos/genética , Transducción de Señal/genéticaRESUMEN
BACKGROUND: Intercellular signaling via the Notch pathway regulates cell fate, patterning, differentiation and proliferation, and is essential for the proper development of bilaterians and cnidarians. To investigate the origins of the Notch pathway, we are studying its deployment in a representative of an early branching lineage, the poriferan Amphimedon queenslandica. The A. queenslandica genome encodes a single Notch receptor and five membrane-bound Delta ligands, as well as orthologs of many genes that enact and regulate canonical Notch signaling events in other animals. METHODS: In the present report we analyze the structure of the five A. queenslandica Deltas using bioinformatic methods, and characterize their developmental expression via whole mount in situ hybridization and histological staining. RESULTS: Sequence analysis of the A. queenslandica Delta ligands highlights the conservation of their extracellular domains. This contrasts with the divergence of their intracellular regions, each of which is predicted to bear a unique repertoire of protein interaction motifs. In keeping with this diversity, these ligands are expressed differentially and dynamically throughout A. queenslandica embryogenesis, both in cell type specific patterns and broader regional domains. Notably, this expression coincides with the development of the photosensitive larval pigment ring, the non-ciliated cuboidal cells located at the anterior pole of the larva, and the intraepithelial flask cells and globular cells that are presumed to have sensory and/or secretory roles. CONCLUSIONS: Based on the dynamic and complex patterns of expression of these Delta ligands and the Notch receptor, we propose that the Notch signaling pathway is involved in regulating the development of diverse cell types in A. queenslandica. From these observations we infer that Notch signaling is a conserved feature of metazoan development, ancestrally contributing to cell determination, patterning and differentiation processes.
RESUMEN
BACKGROUND: Annelids and arthropods each possess a segmented body. Whether this similarity represents an evolutionary convergence or inheritance from a common segmented ancestor is the subject of ongoing investigation. METHODS: To investigate whether annelids and arthropods share molecular components that control segmentation, we isolated orthologs of the Drosophila melanogaster pair-rule genes, runt, paired (Pax3/7) and eve, from the polychaete annelid Capitella teleta and used whole mount in situ hybridization to characterize their expression patterns. RESULTS: When segments first appear, expression of the single C. teleta runt ortholog is only detected in the brain. Later, Ct-runt is expressed in the ventral nerve cord, foregut and hindgut. Analysis of Pax genes in the C. teleta genome reveals the presence of a single Pax3/7 ortholog. Ct-Pax3/7 is initially detected in the mid-body prior to segmentation, but is restricted to two longitudinal bands in the ventral ectoderm. Each of the two C. teleta eve orthologs has a unique and complex expression pattern, although there is partial overlap in several tissues. Prior to and during segment formation, Ct-eve1 and Ct-eve2 are both expressed in the bilaterial pair of mesoteloblasts, while Ct-eve1 is expressed in the descendant mesodermal band cells. At later stages, Ct-eve2 is expressed in the central and peripheral nervous system, and in mesoderm along the dorsal midline. In late stage larvae and adults, Ct-eve1 and Ct-eve2 are expressed in the posterior growth zone. CONCLUSIONS: C. teleta eve, Pax3/7 and runt homologs all have distinct expression patterns and share expression domains with homologs from other bilaterians. None of the pair-rule orthologs examined in C. teleta exhibit segmental or pair-rule stripes of expression in the ectoderm or mesoderm, consistent with an independent origin of segmentation between annelids and arthropods.
RESUMEN
Analyses of recently sequenced sponge, cnidarian, placozoan, and choanoflagellate genomes have revealed that most transcription factor (TF) classes and families expressed during bilaterian development originated at the dawn of the animal kingdom, before the divergence of contemporary animal lineages. The ancestral metazoan genome included members of the bHLH, Mef2, Fox, Sox, T-box, ETS, nuclear receptor, Rel/NF-kappaB, bZIP, and Smad families, and a diversity of homeobox-containing classes, including ANTP, Prd-like, Pax, POU, LIM-HD, Six, and TALE. As many of these TF classes and families appear to be metazoan specific and not present in choanoflagellates, fungi and more distant eukaryotes, their genesis and expansion may have contributed to the evolution of animal multicellularity.
Asunto(s)
Evolución Molecular , Factores de Transcripción/química , Animales , Genómica , Familia de Multigenes , FilogeniaRESUMEN
INTRODUCTIONDevelopmental gene expression is analyzed predominantly via whole-mount in situ hybridization using digoxigenin-labeled RNA probes. This protocol describes how to perform this procedure in Amphimedon queenslandica, including fixation, hybridization, and sectioning of embryonic, larval, and post-larval juvenile stages.
RESUMEN
INTRODUCTIONFertilization occurs internally in Amphimedon and embryos are brooded in multiple chambers throughout the adult. Each chamber contains a mixture of developmental stages, from egg to late ring stages (i.e., prehatch late embryos). At the end of embryogenesis, swimming parenchymella larvae emerge from the adult. After several hours in the water column, the larvae settle and metamorphose into juvenile sponges. This protocol details how to obtain Amphimedon larvae and post-larvae/juveniles as well as embryos. Once isolated, these biological stages can be used for a variety of molecular and cellular analyses.
RESUMEN
INTRODUCTIONSponges are one of the earliest branching metazoans. In addition to undergoing complex development and differentiation, they can regenerate via stem cells and can discern self from nonself ("allorecognition"), making them a useful comparative model for a range of metazoan-specific processes. Molecular analyses of these processes have the potential to reveal ancient homologies shared among all living animals and critical genomic innovations that underpin metazoan multicellularity. Amphimedon queenslandica (Porifera, Demospongiae, Haplosclerida, Niphatidae) is the first poriferan representative to have its genome sequenced, assembled, and annotated. Amphimedon exemplifies many sessile and sedentary marine invertebrates (e.g., corals, ascidians, bryozoans): They disperse during a planktonic larval phase, settle in the vicinity of conspecifics, ward off potential competitors (including incompatible genotypes), and ensure that brooded eggs are fertilized by conspecific sperm. Using genomic and expressed sequence tag (EST) resources from Amphimedon, functional genomic approaches can be applied to a wide range of ecological and population genetic processes, including fertilization, dispersal, and colonization dynamics, host-symbiont interactions, and secondary metabolite production. Unlike most other sponges, Amphimedon produce hundreds of asynchronously developing embryos and larvae year-round in distinct, easily accessible brood chambers. Embryogenesis gives rise to larvae with at least a dozen cell types that are segregated into three layers and patterned along the body axis. In this article, we describe some of the methods currently available for studying A. queenslandica, focusing on the analysis of embryos, larvae, and post-larvae.
RESUMEN
We report the spatial expression patterns of five anterior Hox genes during larval development of the gastropod mollusc Haliotis asinina, an unsegmented spiralian lophotrochozoan. Molecular alignments and phylogenetic analysis indicate that these genes are homologues of Drosophila HOM-C genes labial, proboscipedia, zen, Deformed, and Sex combs reduced; the abalone genes are named Has-Hox1, -Hox2, -Hox3, -Hox4, and -Hox5. Has-Hox transcripts are first detected in the free-swimming trochophore larval stage and restricted to the posttrochal ectoderm. Has-Hox2, -Hox3, and -Hox4 are expressed in bilaterally symmetrical and overlapping patterns in presumptive neuroectodermal cells on the ventral side of the trochophore. Has-Hox1 expression is restricted to a ring of cells on the dorsoposterior surface, corresponding to the outer mantle edge where new larval shell is being synthesized. There appears to be little change in the expression domains of these Has-Hox genes in pre- and posttorsional veliger larvae, with expression maintained in ectodermal and neuroectodermal tissues. Has-Hox2, -Hox3, -Hox4, and-Hox5 appear to be expressed in a colinear manner in the ganglia and connectives in the twisted nervous system. This pattern is not evident in older larvae. Has-Hox1 and-Hox4 are expressed in the margin of the mantle in the posttorsional veliger, suggesting that Hox genes play a role in gastropod shell formation.