Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Bioinform Adv ; 4(1): vbae092, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948009

RESUMEN

Motivation: The data sharing of large comprehensive cancer research projects, such as The Cancer Genome Atlas (TCGA), has improved the availability of high-quality data to research labs around the world. However, due to the volume and inherent complexity of high-throughput omics data, analysis of this is limited by the capacity for performing data processing through programming languages such as R or Python. Existing webtools lack functionality that supports large-scale analysis; typically, users can only input one gene, or a gene list condensed into a gene set, instead of individual gene-level analysis. Furthermore, analysis results are usually displayed without other sample-level molecular or clinical annotations. To address these gaps in the existing webtools, we have developed Evergene using R and Shiny. Results: Evergene is a user-friendly webtool that utilizes RNA-sequencing data, alongside other sample and clinical annotation, for large-scale gene-centric analysis, including principal component analysis (PCA), survival analysis (SA), and correlation analysis (CA). Moreover, Evergene achieves in-depth analysis of cancer transcriptomic data which can be explored through dimensional reduction methods, relating gene expression with clinical events or other sample information, such as ethnicity, histological classification, and molecular indices. Lastly, users can upload custom data to Evergene for analysis. Availability and implementation: Evergene webtool is available at https://bshihlab.shinyapps.io/evergene/. The source code and example user input dataset are available at https://github.com/bshihlab/evergene.

2.
PLoS One ; 15(11): e0242108, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33186366

RESUMEN

The concept of successional trajectories describes how small differences in initial community composition can magnify through time and lead to significant differences in mature communities. For many animals, the types and sources of early-life exposures to microbes have been shown to have significant and long-lasting effects on the community structure and/or function of the microbiome. In modern commercial poultry production, chicks are reared as a single age cohort and do not directly encounter adult birds. This scenario is likely to initiate a trajectory of microbial community development that is significantly different than non-industrial settings where chicks are exposed to a much broader range of environmental and fecal inocula; however, the comparative effects of these two scenarios on microbiome development and function remain largely unknown. In this work, we performed serial transfers of cecal material through multiple generations of birds to first determine if serial transfers exploiting the ceca in vivo, rather than the external environment or artificial incubations, can produce a stable microbial community. Subsequently, we compared microbiome development between chicks receiving this passaged, i.e. host-selected, cecal material orally, versus an environmental inoculum, to test the hypothesis that the first exposure of newly hatched chicks to microbes determines early GI microbiome structure and may have longer-lasting effects on bird health and development. Cecal microbiome dynamics and bird weights were tracked for a two-week period, with half of the birds in each treatment group exposed to a pathogen challenge at 7 days of age. We report that: i) a relatively stable community was derived after a single passage of transplanted cecal material, ii) this cecal inoculum significantly but ephemerally altered community structure relative to the environmental inoculum and PBS controls, and iii) either microbiome transplant administered at day-of-hatch appeared to have some protective effects against pathogen challenge relative to uninoculated controls. Differentially abundant taxa identified across treatment types may inform future studies aimed at identifying strains associated with beneficial phenotypes.


Asunto(s)
Pollos/microbiología , Trasplante de Microbiota Fecal/veterinaria , Microbioma Gastrointestinal , Fenotipo , Animales , Ciego/microbiología , Pollos/crecimiento & desarrollo , Trasplante de Microbiota Fecal/métodos
3.
Poult Sci ; 97(10): 3635-3644, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30016503

RESUMEN

Next-generation DNA sequencing is rapidly becoming a powerful tool for food animal management. One valuable use of this technology is to re-examine long-standing observations of performance differences associated with animal husbandry practices to better understand how these differences may be modulated by the gastrointestinal (GI) microbiome. The influences of environmental parameters such as air temperature and relative humidity on broiler chicken performance have commonly been observed, but how the GI microbiome may respond to seasonal environmental changes remains largely unknown. The purposes of this study were therefore to: (1) characterize the cecal microflora of commercial broilers (N = 87) collected at harvest across all 4 seasons, and (2) identify any significant changes of the GI microbiome and specific taxa according to season and Campylobacter status. Finding taxa with significant positive or negative correlations with Campylobacter could be useful by identifying indicator or antagonistic taxa and could also inform inferences regarding the ecological niche of Campylobacter. Whole GI tracts were removed from commercial broilers representing 87 independent flocks between April 2013 and May 2014 in the U.S. state of Georgia. Intact ceca were separated, cultured for Campylobacter and cecal contents were frozen. The cecal microbiome was characterized using barcoded sequencing of 16S rRNA genes on the Illumina MiSeq platform. The composition of the microbiome measured at processing was generally not affected by Campylobacter status but was most significantly affected by season of grow-out. Significantly fewer bacterial genera were found in winter than spring or summer. Bacterial genera with prior evidence for both positive or negative influences on gut health outcomes were significantly less abundant in the fall. Identifying specific members of the GI microbiota that vary according to season may help develop novel interventions to improve husbandry practices and growth performance.


Asunto(s)
Bacterias/clasificación , Campylobacter/aislamiento & purificación , Ciego/microbiología , Pollos/microbiología , Microbioma Gastrointestinal , Crianza de Animales Domésticos/métodos , Animales , ADN Bacteriano/análisis , Georgia , Filogenia , ARN Ribosómico 16S/análisis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA