Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Phys Chem Chem Phys ; 23(36): 20478-20488, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34498634

RESUMEN

Time-resolved observations have been made of the formation of vibrationally excited NO X 2Π (v') following collisional quenching of NO A 2Σ+ (v = 0) by NO X 2Π (v = 0). Two time scales are observed, namely a fast production rate consistent with direct formation from the quenching of the electronically excited NO A state, together with a slow component, the magnitude and rate of formation of which depend upon NO pressure. A reservoir state formed by quenching of NO A 2Σ+ (v = 0) is invoked to explain the observations, and the available evidence points to this state being the first electronically excited state of NO, a 4Π. The rate constant for quenching of the a 4Π state to levels v' = 11-16 by NO is measured as (8.80 ± 1.1) × 10-11 cm3 molecule-1 s-1 at 298 K where the error quoted is two standard deviations, and from measurements of the increased formation of high vibrational levels of NO(X) by the slow process we estimate a lower limit for the fraction of self-quenching collisions of NO A 2Σ+ (v = 0) which lead to NO a 4Π as 19%.

2.
Anal Chem ; 88(17): 8857-61, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27487178

RESUMEN

Respiratory physicians use bronchoscopy for visual assessment of the lungs' topography and collecting tissue samples for external analysis. We propose a novel bronchoscope tool that would enable spatially dependent measurements of the functioning of the lungs by determining local concentrations of carbon dioxide, which will be produced by healthy parts of the lung at rates that are higher than from portions where gas exchange is impaired. The gas analyzer is based on a compact laser absorption spectrometer making use of fiber optics for delivery and return of low intensity diode laser radiation to and from the measurement chamber at the distal end of a flexible conduit. The appropriate optical wavelength was chosen such that light is selectively absorbed only by gaseous CO2. The optical absorption takes place over a short path (8.8 mm) within a rigid, 12 mm long, perforated probe tip. Wavelength modulation spectroscopy was adopted as the analytical technique to reduce the noise on the optical signal and yield measurements of relative CO2 concentration every 180 ms with a precision as low as 600 part-per-million by volume. The primary objective of such a device is to see if additional spatial information about the lungs functionality can be gathered, which will complement visual observation.


Asunto(s)
Broncoscopios , Dióxido de Carbono/análisis , Pulmón/química , Humanos
3.
Anal Chem ; 88(22): 11016-11021, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27753485

RESUMEN

A portable and compact device is demonstrated for measuring acetone in breath samples. The device features a 7 cm long high finesse optical cavity as an optical sensor that is coupled to a miniature adsorption preconcentrator containing 0.5 g of polymer material. Acetone is trapped out of breath and released into the optical cavity where it is probed by a near-infrared diode laser operating at ∼1670 nm. With an optical cavity mirror reflectivity of 99.994%, a limit of detection of 159 ppbv (1σ) is demonstrated on samples from breath bags. Initial results on direct breath sampling are presented with a precision of 100 ppbv. The method is validated with measurements made using an ion-molecule reaction mass spectrometer. Data are presented on elevated breath acetone from two individuals following an overnight fast and exercise, and from a third individual during several days of routine behavior.


Asunto(s)
Acetona/análisis , Métodos Analíticos de la Preparación de la Muestra , Pruebas Respiratorias/instrumentación , Análisis Espectral/métodos , Humanos , Análisis Espectral/instrumentación
4.
Toxicol Pathol ; 44(1): 98-111, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26534939

RESUMEN

The growth plate, ovary, adrenal gland, and rodent incisor tooth are sentinel organs for antiangiogenic effects since they respond reliably, quantitatively, and sensitively to inhibition of the vascular endothelial growth factor receptor (VEGFR). Here we report that treatment of rats with platelet-derived growth factor receptor beta (PDGFRß) inhibitors that target pericytes results in severe ovarian hemorrhage with degeneration and eventual rupture of the corpus luteum. Evaluation of the growth plate, adrenal gland, and incisor tooth that are typical target organs for antiangiogenic treatment in the rodent revealed no abnormalities. Histologically, the changes in the ovary were characterized by sinusoidal dilatation, increased vessel fragility, and hemorrhage into the corpus luteum. Immunocytochemical staining of vessels with alpha smooth muscle actin and CD31 that recognize pericytes and vascular endothelium, respectively, demonstrated that this effect was due to selective pericyte deficiency within corpora lutea. Further experiments in which rats were treated concurrently with both PDGFRß and VEGFR inhibitors ablated the hemorrhagic response, resulting instead in corpus luteum necrosis. These changes are consistent with the notion that selective pericyte loss in the primitive capillary network resulted in increased vessel fragility and hemorrhage, whereas concomitant VEGFR inhibition resulted in vessel regression and reduced vascular perfusion that restricted development of the hemorrhagic vessels. These results also highlight the utility of the rodent ovary to respond differentially to VEGFR and PDGFR inhibitors, which may provide useful information during routine safety assessment for determining target organ toxicity.


Asunto(s)
Cuerpo Lúteo/efectos de los fármacos , Hemorragia/inducido químicamente , Ovario/efectos de los fármacos , Pericitos/efectos de los fármacos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Actinas/metabolismo , Animales , Cuerpo Lúteo/fisiopatología , Femenino , Histocitoquímica , Ovario/patología , Ovario/fisiopatología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Wistar
5.
J Appl Physiol (1985) ; 135(1): 205-216, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37262105

RESUMEN

This study explored the use of computed cardiopulmonography (CCP) to assess lung function in early-stage cystic fibrosis (CF). CCP has two components. The first is a particularly accurate technique for measuring gas exchange. The second is a computational cardiopulmonary model where patient-specific parameters can be estimated from the measurements of gas exchange. Twenty-five participants (14 healthy controls, 11 early-stage CF) were studied with CCP. They were also studied with a standard clinical protocol to measure the lung clearance index (LCI2.5). Ventilation inhomogeneity, as quantified through CCP parameter σlnCl, was significantly greater (P < 0.005) in CF than in controls, and anatomical deadspace relative to predicted functional residual capacity (DS/FRCpred) was significantly more variable (P < 0.002). Participant-specific parameters were used with the CCP model to calculate idealized values for LCI2.5 (iLCI2.5) where extrapulmonary influences on the LCI2.5, such as breathing pattern, had all been standardized. Both LCI2.5 and iLCI2.5 distinguished clearly between CF and control participants. LCI2.5 values were mostly higher than iLCI2.5 values in a manner dependent on the participant's respiratory rate (r = 0.46, P < 0.05). The within-participant reproducibility for iLCI2.5 appeared better than for LCI2.5, but this did not reach statistical significance (F ratio = 2.2, P = 0.056). Both a sensitivity analysis on iLCI2.5 and a regression analysis on LCI2.5 revealed that these depended primarily on an interactive term between CCP parameters of the form σlnCL*(DS/FRC). In conclusion, the LCI2.5 (or iLCI2.5) probably reflects an amalgam of different underlying lung changes in early-stage CF that would require a multiparameter approach, such as potentially CCP, to resolve.NEW & NOTEWORTHY Computed cardiopulmonography is a new technique comprising a highly accurate sensor for measuring respiratory gas exchange coupled with a cardiopulmonary model that is used to identify a set of patient-specific characteristics of the lung. Here, we show that this technique can improve on a standard clinical approach for lung function testing in cystic fibrosis. Most particularly, an approach incorporating multiple model parameters can potentially separate different aspects of pathological change in this disease.


Asunto(s)
Fibrosis Quística , Humanos , Reproducibilidad de los Resultados , Pruebas de Función Respiratoria/métodos , Pulmón , Respiración
6.
Front Physiol ; 13: 1032126, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388110

RESUMEN

Early diagnosis and disease phenotyping in COPD are currently limited by the use of spirometry, which may remain normal despite significant small-airways disease and which may not fully capture a patient's underlying pathophysiology. In this study we explored the use of a new non-invasive technique that assesses gas-exchange inhomogeneity in patients with COPD of varying disease severity (according to GOLD Stage), compared with age-matched healthy controls. The technique, which combines highly accurate measurement of respiratory gas exchange using a bespoke molecular flow sensor and a mechanistic mathematical model of the lung, provides new indices of lung function: the parameters σCL, σCd, and σVD represent the standard deviations of distributions for alveolar compliance, anatomical deadspace and vascular conductance relative to lung volume, respectively. It also provides parameter estimates for total anatomical deadspace and functional residual capacity (FRC). We demonstrate that these parameters are robust and sensitive, and that they can distinguish between healthy individuals and those with mild-moderate COPD (stage 1-2), as well as distinguish between mild-moderate COPD (stage 1-2) and more severe (stage 3-4) COPD. In particular, σCL, a measure of unevenness in lung inflation/deflation, could represent a more sensitive non-invasive marker of early or mild COPD. In addition, by providing a multi-dimensional assessment of lung physiology, this technique may also give insight into the underlying pathophysiological phenotype for individual patients. These preliminary results warrant further investigation in larger clinical research studies, including interventional trials.

7.
J Appl Physiol (1985) ; 133(5): 1175-1191, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36173325

RESUMEN

The longer-term effects of COVID-19 on lung physiology remain poorly understood. Here, a new technique, computed cardiopulmonography (CCP), was used to study two COVID-19 cohorts (MCOVID and C-MORE-LP) at both ∼6 and ∼12 mo after infection. CCP is comprised of two components. The first is collection of highly precise, highly time-resolved measurements of gas exchange with a purpose-built molecular flow sensor based around laser absorption spectroscopy. The second component is estimation of physiological parameters by fitting a cardiopulmonary model to the data set. The measurement protocol involved 7 min of breathing air followed by 5 min of breathing pure O2. One hundred seventy-eight participants were studied, with 97 returning for a repeat assessment. One hundred twenty-six arterial blood gas samples were drawn from MCOVID participants. For participants who had required intensive care and/or invasive mechanical ventilation, there was a significant increase in anatomical dead space of ∼30 mL and a significant increase in alveolar-to-arterial Po2 gradient of ∼0.9 kPa relative to control participants. Those who had been hospitalized had reductions in functional residual capacity of ∼15%. Irrespectively of COVID-19 severity, participants who had had COVID-19 demonstrated a modest increase in ventilation inhomogeneity, broadly equivalent to that associated with 15 yr of aging. This study illustrates the capability of CCP to study aspects of lung function not so easily addressed through standard clinical lung function tests. However, without measurements before infection, it is not possible to conclude whether the findings relate to the effects of COVID-19 or whether they constitute risk factors for more serious disease.NEW & NOTEWORTHY This study used a novel technique, computed cardiopulmonography, to study the lungs of patients who have had COVID-19. Depending on severity of infection, there were increases in anatomical dead space, reductions in absolute lung volumes, and increases in ventilation inhomogeneity broadly equivalent to those associated with 15 yr of aging. However, without measurements taken before infection, it is unclear whether the changes result from COVID-19 infection or are risk factors for more severe disease.


Asunto(s)
COVID-19 , Humanos , Pruebas de Función Respiratoria , Respiración Artificial , Pulmón , Respiración
8.
Sci Rep ; 11(1): 5252, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664377

RESUMEN

Respiratory approaches to determining cardiac output in humans are securely rooted in mass balance and therefore potentially highly accurate. To address existing limitations in the gas analysis, we developed an in-airway analyser based on laser absorption spectroscopy to provide analyses every 10 ms. The technique for estimating cardiac output requires both a relatively soluble and insoluble tracer gas, and we employed acetylene and methane for these, respectively. A multipass cell was used to provide sufficient measurement sensitivity to enable analysis directly within the main gas stream, thus avoiding errors introduced by sidestream gas analysis. To assess performance, measurements of cardiac output were made during both rest and exercise on five successive days in each of six volunteers. The measurements were extremely repeatable (coefficient of variation ~ 7%). This new measurement technology provides a stable foundation against which the algorithm to calculate cardiac output can be further developed.


Asunto(s)
Gasto Cardíaco/fisiología , Respiración , Sistema Respiratorio/diagnóstico por imagen , Análisis Espectral/métodos , Ejercicio Físico/fisiología , Humanos , Rayos Láser , Consumo de Oxígeno/fisiología , Descanso , Tórax/diagnóstico por imagen , Tórax/fisiología
9.
J Appl Physiol (1985) ; 130(5): 1383-1397, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33475459

RESUMEN

Many models of the body's gas stores have been generated for specific purposes. Here, we seek to produce a more general purpose model that: 1) is relevant for both respiratory (CO2 and O2) and inert gases; 2) is based firmly on anatomy and not arbitrary compartments; 3) can be scaled to individuals; and 4) incorporates arterial and venous circulatory delays as well as tissue volumes so that it can reflect rapid transients with greater precision. First, a "standard man" of 11 compartments was produced, based on data compiled by the International Radiation Protection Commission. Each compartment was supplied via its own parallel circulation, the arterial and venous volumes of which were based on reported tissue blood volumes together with data from a detailed anatomical model for the large arteries and veins. A previously published model was used for the blood gas chemistry of CO2 and O2. It was not permissible ethically to insert pulmonary artery catheters into healthy volunteers for model validation. Therefore, validation was undertaken by comparing model predictions with previously published data and by comparing model predictions with experimental data for transients in gas exchange at the mouth following changes in alveolar gas composition. Overall, model transients were fastest for O2, intermediate for CO2, and slowest for N2. There was good agreement between model estimates and experimentally measured data. Potential applications of the model include estimation of closed-loop gain for the ventilatory chemoreflexes and improving the precision associated with multibreath washout testing and respiratory measurement of cardiac output.NEW & NOTEWORTHY A model for the body gas stores has been generated that is applicable to both respiratory gases (CO2 and O2) and inert gases. It is based on anatomical details for organ volumes and blood contents together with anatomical details of the large arteries. It can be scaled to the body size and composition of different individuals. The model enables mixed venous gas compositions to be predicted from the systemic arterial compositions.


Asunto(s)
Dióxido de Carbono , Oxígeno , Gasto Cardíaco , Humanos , Pulmón , Masculino , Gases Nobles , Intercambio Gaseoso Pulmonar
10.
Aerosp Med Hum Perform ; 92(8): 633-641, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34503616

RESUMEN

AbstractBACKGROUND: Members of the public will soon be taking commercial suborbital spaceflights with significant Gx (chest-to-back) acceleration potentially reaching up to 6 Gx. Pulmonary physiology is gravity-dependent and is likely to be affected, which may have clinical implications for medically susceptible individuals.METHODS: During 2-min centrifuge exposures ranging up to 6 Gx, 11 healthy subjects were studied using advanced respiratory techniques. These sustained exposures were intended to allow characterization of the underlying pulmonary response and did not replicate actual suborbital G profiles. Regional distribution of ventilation in the lungs was determined using electrical impedance tomography. Neural respiratory drive (from diaphragm electromyography) and work of breathing (from transdiaphragmatic pressures) were obtained via nasoesophageal catheters. Arterial blood gases were measured in a subset of subjects. Measurements were conducted while breathing air and breathing 15 oxygen to simulate anticipated cabin pressurization conditions.RESULTS: Acceleration caused hypoxemia that worsened with increasing magnitude and duration of Gx. Minimum arterial oxygen saturation at 6 Gx was 86 1 breathing air and 79 1 breathing 15 oxygen. With increasing Gx the alveolar-arterial (A-a) oxygen gradient widened progressively and the relative distribution of ventilation reversed from posterior to anterior lung regions with substantial gas-trapping anteriorly. Severe breathlessness accompanied large progressive increases in work of breathing and neural respiratory drive.DISCUSSION: Sustained high-G acceleration at magnitudes relevant to suborbital flight profoundly affects respiratory physiology. These effects may become clinically important in the most medically susceptible passengers, in whom the potential role of centrifuge-based preflight evaluation requires further investigation.Pollock RD, Jolley CJ, Abid N, Couper JH, Estrada-Petrocelli L, Hodkinson PD, Leonhardt S, Mago-Elliott S, Menden T, Rafferty G, Richmond G, Robbins PA, Ritchie GAD, Segal MJ, Stevenson AT, Tank HD, Smith TG. Pulmonary effects of sustained periods of high-G acceleration relevant to suborbital spaceflight. Aerosp Med Hum Perform. 2021; 92(7):633641.


Asunto(s)
Medicina Aeroespacial , Vuelo Espacial , Aceleración , Centrifugación , Gravitación , Humanos
11.
J Breath Res ; 15(1): 017101, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33027776

RESUMEN

Ketone testing is an important element of the self-management of illness in type 1 diabetes. The aim of the present study was to see if a breath test for acetone could be used to predict quantitatively the levels of the ketone betahydroxybutyrate in the blood of those with type 1 diabetes, and thus be used as an alternative to capillary testing for ketones. Simultaneous capillary ketones and breath acetone were measured in 72 individuals with type 1 diabetes attending a diabetes clinic and on 9 individuals admitted to hospital with diabetic ketoacidosis. Capillary blood measurements ranged from 0.1 mmol l-1 (the lower limit of the ketone monitor) to over 7 mmol l-1, with breath acetone varying between 0.25 and 474 parts per million by volume. The two variables were found to be correlated and allowed modelling to be carried out which separated breath acetone levels into three categories corresponding to normal, elevated and 'at risk' levels of blood ketones. The results on this limited set of participants suggest that a breath acetone test could be a simple, non-invasive substitute for capillary ketone measurement in type 1 diabetes.


Asunto(s)
Ácido 3-Hidroxibutírico/sangre , Acetona/análisis , Pruebas Respiratorias/métodos , Diabetes Mellitus Tipo 1/sangre , Capilares/metabolismo , Cetoacidosis Diabética/sangre , Humanos , Cetonas/sangre , Modelos Biológicos , Valores de Referencia , Factores de Riesgo
12.
J Breath Res ; 14(4): 047102, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32531773

RESUMEN

The fraction of exhaled nitric oxide (FENO) is an important biomarker for the diagnosis and management of asthma and other pulmonary diseases associated with airway inflammation. In this study we report on a novel method for accurate, highly time-resolved, real time detection of FENO at the mouth. The experimental arrangement is based on a combination of optical sensors for the determination of the temporal profile of exhaled NO and CO2 concentrations. Breath CO2 and exhalation flow are measured at the mouth using diode laser absorption spectroscopy (at 2 µm) and differential pressure sensing, respectively. NO is determined in a sidestream configuration using a quantum cascade laser based, cavity-enhanced absorption cell (at 5.2 µm) which simultaneously measures sidestream CO2. The at-mouth and sidestream CO2 measurements are used to enable the deconvolution of the sidestream NO measurement back to the at-mouth location. All measurements have a time resolution of 0.1 s, limited by the requirement of a reasonable limit of detection for the NO measurement, which on this timescale is 4.7 ppb (2 σ). Using this methodology, NO expirograms (FENOgrams) were measured and compared for eight healthy volunteers. The FENOgrams appear to differ qualitatively between individuals and the hope is that the dynamic information encoded in these FENOgrams will provide valuable additional insight into the location of the inflammation in the airways and potentially predict a response to therapy. A validation of the measurements at low-time resolution is provided by checking that results from previous studies that used a two-compartment model of NO production can be reproduced using our technology.


Asunto(s)
Pruebas Respiratorias/métodos , Fenómenos Ópticos , Análisis Espectral/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
13.
BMJ Open Respir Res ; 7(1)2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32161066

RESUMEN

INTRODUCTION: In asthma, lung function measures are often discordant with clinical features such as disease activity or control. METHODS: We investigated a novel technique that provides a measure (σCL) of unevenness (inhomogeneity) in lung inflation/deflation. In particular, we compared σCL with FEV1% predicted (FEV1%pred) as measures of disease activity in the asthmatic lung. RESULTS: σCL correlated modestly with FEV1%pred. However, σCL is not simply a proxy for FEV1%pred as the effects of salbutamol on the two parameters were unrelated. Importantly, σCL reflected disease control better than FEV1. DISCUSSION: We conclude that σCL shows promise as an objective measure of disease activity in asthma.


Asunto(s)
Asma/fisiopatología , Volumen Espiratorio Forzado , Pulmón/fisiopatología , Intercambio Gaseoso Pulmonar , Índice de Severidad de la Enfermedad , Adulto , Anciano , Albuterol/administración & dosificación , Broncodilatadores/administración & dosificación , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Espirometría/métodos
14.
Clin Cancer Res ; 14(10): 3124-31, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18483380

RESUMEN

PURPOSE: Inhibition of vascular endothelial growth factor-A (VEGF) signaling is a key therapeutic approach in oncology given the role of VEGF in angiogenesis and vascular permeability in solid tumors. Clinical trials examining VEGF signaling inhibitors commonly report hypertension. We examined the effect of cediranib, a highly potent VEGF signaling inhibitor, on the blood pressure of rats and the ability of standard antihypertensive agents to modulate the consequences of VEGF signaling inhibition. EXPERIMENTAL DESIGN: The ability of cediranib to induce hypertensive changes and the effect of giving antihypertensive therapy were investigated in conscious, unrestrained telemetered rats. Two antihypertensive agents were studied: captopril, an angiotensin-converting enzyme inhibitor, and nifedipine, a dihydropyridine calcium channel blocker. The antitumor activity of cediranib, alone and in combination with nifedipine, was also evaluated in a LoVo human colorectal tumor xenograft model in nude rats. All treatments were given orally. RESULTS: Administration of 0.1 to 1.5 mg/kg/d of cediranib for 4 consecutive days induced a relatively mild hypertensive effect, elevating diastolic blood pressure by 10 to 14 mmHg. Dosing 3 mg/kg/d cediranib for 4 days induced a marked hypertension of 35 to 50 mmHg. Captopril (30 mg/kg, qd) was effective at lowering a 10 mmHg increase in blood pressure but not a 35 to 50 mmHg increase. However, the latter was rapidly reversed by administration of nifedipine (10 mg/kg, bd). Coadministration of nifedipine did not negatively affect the antitumor activity of cediranib (1.5 mg/kg/d). CONCLUSIONS: Hypertension is a direct consequence of inhibiting VEGF signaling but can be controlled with appropriately selected, standard antihypertensive medication.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Quinazolinas/farmacología , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Antihipertensivos/farmacología , Antineoplásicos/farmacología , Captopril/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Ratones , Nifedipino/farmacología , Ratas , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Phys Chem A ; 113(24): 6689-96, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19459699

RESUMEN

Absolute peak absorption cross sections and pressure broadening coefficients have been recorded with sub-Doppler limited instrumental resolution for selected rotational lines in the 2(0)(2)4(0)(1) vibronic band of the formaldehyde A(1)A2-X(1)A1 electronic transition. The measured absorption cross sections range between (0.18 +/- 0.01) and (10.1 +/- 0.08) x 10(-19) cm2 molecule(-1) and are considerably larger than values from the literature recorded using apparatus where instrumental broadening was significant. However, comparisons with spectral simulations with equivalent resolution from Smith et al. (J. Phys. Chem. A 2006, 110, 11645-11653) are in excellent agreement. Pressure broadening was studied for the collision partners CH2O, CO2, N2, O2, Ne, Kr, Ar, and He, and the resulting broadening coefficients were found to be reduced in comparison to equivalent values measured in infrared regions, consistent with the reduced dipole moment of the upper state probed in this work. Cavity-enhanced absorption spectroscopy (CEAS) measurements were undertaken using calibrated low concentration (2.9-4.6 ppmv) samples from a permeation source and demonstrate a noise equivalent absorption of 1.2 x 10(-6) cm(-1) Hz(-1/2). This implies a minimum detectable formaldehyde concentration with the current system in atmospheric air of 172 ppbv Hz(-1/2).

17.
Cancer Res ; 65(10): 4389-400, 2005 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15899831

RESUMEN

Inhibition of vascular endothelial growth factor-A (VEGF) signaling is a promising therapeutic approach that aims to stabilize the progression of solid malignancies by abrogating tumor-induced angiogenesis. This may be accomplished by inhibiting the kinase activity of VEGF receptor-2 (KDR), which has a key role in mediating VEGF-induced responses. The novel indole-ether quinazoline AZD2171 is a highly potent (IC50 < 1 nmol/L) ATP-competitive inhibitor of recombinant KDR tyrosine kinase in vitro. Concordant with this activity, in human umbilical vein endothelial cells, AZD2171 inhibited VEGF-stimulated proliferation and KDR phosphorylation with IC50 values of 0.4 and 0.5 nmol/L, respectively. In a fibroblast/endothelial cell coculture model of vessel sprouting, AZD2171 also reduced vessel area, length, and branching at subnanomolar concentrations. Once-daily oral administration of AZD2171 ablated experimental (VEGF-induced) angiogenesis in vivo and inhibited endochondral ossification in bone or corpora luteal development in ovary; physiologic processes that are highly dependent upon neovascularization. The growth of established human tumor xenografts (colon, lung, prostate, breast, and ovary) in athymic mice was inhibited dose-dependently by AZD2171, with chronic administration of 1.5 mg per kg per day producing statistically significant inhibition in all models. A histologic analysis of Calu-6 lung tumors treated with AZD2171 revealed a reduction in microvessel density within 52 hours that became progressively greater with the duration of treatment. These changes are indicative of vascular regression within tumors. Collectively, the data obtained with AZD2171 are consistent with potent inhibition of VEGF signaling, angiogenesis, neovascular survival, and tumor growth. AZD2171 is being developed clinically as a once-daily oral therapy for the treatment of cancer.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Administración Oral , Animales , Disponibilidad Biológica , Desarrollo Óseo/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cuerpo Lúteo/efectos de los fármacos , Cuerpo Lúteo/crecimiento & desarrollo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Proteínas de la Matriz Extracelular , Femenino , Humanos , Ratones , Cadenas Pesadas de Miosina , Neoplasias/irrigación sanguínea , Neoplasias/patología , Miosina Tipo IIB no Muscular , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas/antagonistas & inhibidores , Quinazolinas/farmacocinética , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cancer Res ; 62(16): 4645-55, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12183421

RESUMEN

ZD6474 [N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-amine]is a potent, p.o. active, low molecular weight inhibitor of kinase insert domain-containing receptor [KDR/vascular endothelial growth factor receptor (VEGFR) 2] tyrosine kinase activity (IC(50) = 40 nM). This compound has some additional activity versus the tyrosine kinase activity of fms-like tyrosine kinase 4 (VEGFR3;IC(50) = 110 nM) and epidermal growth factor receptor (EGFR/HER1; IC(50) = 500 nM) and yet demonstrates selectivity against a range of other tyrosine and serine-threonine kinases. The activity of ZD6474 versus KDR tyrosine kinase translates into potent inhibition of vascular endothelial growth factor-A (VEGF)-stimulated endothelial cell (human umbilical vein endothelial cell) proliferation in vitro (IC(50) = 60 nM). Selective inhibition of VEGF signaling has been demonstrated in vivo in a growth factor-induced hypotension model in anesthetized rat: administration of ZD6474 (2.5 mg/kg, i.v.) reversed a hypotensive change induced by VEGF (by 63%) but did not significantly affect that induced by basic fibroblast growth factor. Once-daily oral administration of ZD6474 to growing rats for 14 days produced a dose-dependent increase in the femoro-tibial epiphyseal growth plate zone of hypertrophy, which is consistent with inhibition of VEGF signaling and angiogenesis in vivo. Administration of 50 mg/kg/day ZD6474 (once-daily, p.o.) to athymic mice with intradermally implanted A549 tumor cells also inhibited tumor-induced neovascularization significantly (63% inhibition after 5 days; P < 0.001). Oral administration of ZD6474 to athymic mice bearing established (0.15-0.47 cm(3)), histologically distinct (lung, prostate, breast, ovarian, colon, or vulval) human tumor xenografts or after implantation of aggressive syngeneic rodent tumors (lung, melanoma) in immunocompetent mice, produced a dose-dependent inhibition of tumor growth in all cases. Statistically significant antitumor activity was evident in each model with at least 25 mg/kg ZD6474 once daily (P < 0.05, one-tailed t test). Histological analysis of Calu-6 tumors treated with 50 mg/kg/day ZD6474 for 24 days showed a significant reduction (>70%) in CD31 (endothelial cell) staining in nonnecrotic regions. ZD6474 also restrained growth of much larger (0.9 cm(3) volume) Calu-6 lung tumor xenografts and induced profound regression in established PC-3 prostate tumors of 1.4 cm(3) volume. ZD6474 is currently in Phase I clinical development as a once-daily oral therapy in patients with advanced cancer.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Factores de Crecimiento Endotelial/antagonistas & inhibidores , Linfocinas/antagonistas & inhibidores , Piperidinas/farmacología , Quinazolinas/farmacología , Administración Oral , Animales , División Celular/efectos de los fármacos , Factores de Crecimiento Endotelial/fisiología , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Linfocinas/fisiología , Masculino , Ratones , Neoplasias Experimentales/irrigación sanguínea , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neovascularización Patológica/tratamiento farmacológico , Ratas , Ratas Wistar , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Receptores de Factores de Crecimiento/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cancer Res ; 76(11): 3307-18, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27020862

RESUMEN

Fulvestrant is an estrogen receptor (ER) antagonist administered to breast cancer patients by monthly intramuscular injection. Given its present limitations of dosing and route of administration, a more flexible orally available compound has been sought to pursue the potential benefits of this drug in patients with advanced metastatic disease. Here we report the identification and characterization of AZD9496, a nonsteroidal small-molecule inhibitor of ERα, which is a potent and selective antagonist and downregulator of ERα in vitro and in vivo in ER-positive models of breast cancer. Significant tumor growth inhibition was observed as low as 0.5 mg/kg dose in the estrogen-dependent MCF-7 xenograft model, where this effect was accompanied by a dose-dependent decrease in PR protein levels, demonstrating potent antagonist activity. Combining AZD9496 with PI3K pathway and CDK4/6 inhibitors led to further growth-inhibitory effects compared with monotherapy alone. Tumor regressions were also seen in a long-term estrogen-deprived breast model, where significant downregulation of ERα protein was observed. AZD9496 bound and downregulated clinically relevant ESR1 mutants in vitro and inhibited tumor growth in an ESR1-mutant patient-derived xenograft model that included a D538G mutation. Collectively, the pharmacologic evidence showed that AZD9496 is an oral, nonsteroidal, selective estrogen receptor antagonist and downregulator in ER(+) breast cells that could provide meaningful benefit to ER(+) breast cancer patients. AZD9496 is currently being evaluated in a phase I clinical trial. Cancer Res; 76(11); 3307-18. ©2016 AACR.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Cinamatos/farmacología , Moduladores de los Receptores de Estrógeno/farmacología , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor alfa de Estrógeno/genética , Indoles/farmacología , Mutación/genética , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Cinamatos/administración & dosificación , Evaluación Preclínica de Medicamentos , Moduladores de los Receptores de Estrógeno/administración & dosificación , Receptor alfa de Estrógeno/química , Femenino , Humanos , Indoles/administración & dosificación , Ratones , Ratones Endogámicos NOD , Ratones SCID , Conformación Proteica , Ratas , Células Tumorales Cultivadas , Útero/metabolismo , Útero/patología , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Anticancer Res ; 23(5A): 3639-50, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14666659

RESUMEN

From immunohistochemical and ligand-binding studies, it is known that the epidermal growth factor receptor (EGFR), a member of the erbB family of receptors, is expressed in tissues of epithelial, mesenchymal and neuronal origin and plays a major role in normal cellular processes such as proliferation, differentiation and development. EGFR is highly expressed in a number of solid tumours and its expression correlates with tumour progression, resistance to chemotherapy and a poor prognosis; it is consequently an attractive target for the rational design of novel anticancer agents. Knowledge of the role of EGFR in normal tissues will help the understanding of the adverse events associated with such agents. Studies in knockout mice and preclinical toxicology studies have shown that the major effects of inhibiting the EGFR are skin and gastrointestinal toxicities. Clinical studies with inhibitors of EGFR, such as gefitinib, cetuximab and erlotinib, have shown a favourable adverse-event profile, primarily consisting of skin and gastrointestinal toxicities, as predicted from the mechanism-based effects observed in preclinical studies.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/fisiología , Animales , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Receptores ErbB/metabolismo , Gefitinib , Humanos , Ratones , Ratones Noqueados , Quinazolinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA