Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Molecules ; 28(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37959690

RESUMEN

It is urgent yet challenging to develop new environmentally friendly and cost-effective sources of energy. Molecular solar thermal (MOST) systems for energy capture and storage are a promising option. With this in mind, we have prepared a new water-soluble (pH > 6) norbornadiene derivative (HNBD1) whose MOST properties are reported here. HNBD1 shows a better matching to the solar spectrum compared to unmodified norbornadiene, with an onset absorbance of λonset = 364 nm. The corresponding quadricyclane photoisomer (HQC1) is quantitatively generated through the light irradiation of HNBD1. In an alkaline aqueous solution, the MOST system consists of the NBD1-/QC1- pair of deprotonated species. QC1- is very stable toward thermal back-conversion to NBD1-; it is absolutely stable at 298 K for three months and shows a marked resistance to temperature increase (half-life t½ = 587 h at 371 K). Yet, it rapidly (t½ = 11 min) releases the stored energy in the presence of the Co(II) porphyrin catalyst Co-TPPC (ΔHstorage = 65(2) kJ∙mol-1). Under the explored conditions, Co-TPPC maintains its catalytic activity for at least 200 turnovers. These results are very promising for the creation of MOST systems that work in water, a very interesting solvent for environmental sustainability, and offer a strong incentive to continue research towards this goal.

2.
Langmuir ; 34(6): 2205-2218, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29035549

RESUMEN

Cement is produced by mixing mineral phases based on calcium silicates and aluminates with water. The hydration reaction of the mixture leads to a synthetic material with outstanding properties that can be used as a binder for construction applications. Despite the importance of cement in society, for a long time, the chemical reactions involved in its hydration remained poorly understood as a result of the complexity of hydration processes, nanostructure, and transport phenomena. This feature article reviews the recently obtained results using water as a probe to detail the essential features in the setting process. By examining the peculiar physicochemical properties of water, fundamental information on the evolving inorganic colloid matrix can be deduced, ranging from the fractal nanostructure of the inorganic silicate framework to the transport phenomena inside the developing porosity. A similar approach can be transferred to the investigation of a plethora of other complex systems, where water plays the main role in determining the final structural and transport properties (i.e., biomaterials, hydrogels, and colloids).

3.
Langmuir ; 33(9): 2411-2419, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28191982

RESUMEN

Aluminum oxide surfaces are of utmost interest in different biotech applications, in particular for their use as adjuvants (i.e., booster of the immune response against infectious agents in vaccines production). In this framework, imogolite clays combine the chemical flexibility of an exposed alumina surface with 1D nanostructure. This work reports on the interaction between amino acids and imogolite, using turbidimetry, ζ-potential measurements, and Fourier transform infrared spectroscopy as main characterization tools. Amino acids with different side chain functional groups were investigated, showing that glutamic acid (Glu) has the strongest affinity for the imogolite surface. This was exploited to prepare a composite material made of a synthetic surfactant bearing a Glu polar head and a hydrophobic C12 alkyl tail, adsorbed onto the surface of imogolite. The adsorption of a model drug (rhodamine B isothiocyanate) by the hybrid was evaluated both in water and in physiological saline conditions. The findings of this paper suggest that the combination between the glutamate headgroup and imogolite represents a promising platform for the fabrication of hybrid nanostructures with tailored functionalities.


Asunto(s)
Silicatos de Aluminio/química , Aminoácidos/química , Ácido Glutámico/química , Tensoactivos/química , Adsorción , Arcilla , Isotiocianatos/química , Tamaño de la Partícula , Rodaminas/química , Propiedades de Superficie
4.
Carbohydr Polym ; 326: 121586, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142067

RESUMEN

Functional materials obtained through green and sustainable routes are attracting particular attention due to the need to reduce the environmental impact of the chemical industry. In this work we propose a bioinspired approach for the preparation of alginate fibers containing silver nanoparticles (AgNPs), to be used for antimicrobial purposes. We demonstrate that filiform polymeric structures with length of a few meters can be easily obtained by extruding an alginate solution in an aqueous Ag+-containing bath (i.e. wet spinning) and that treating the fibers with freshly-squeezed lemon juice leads to the formation of AgNPs homogeneously distributed within the polymeric network. Using mixtures of ascorbic and citric acid to mimic lemon juice composition we highlight the influence of the aforementioned molecules on the nanoparticles formation process as well as on the properties of the fibers. Varying the amount of citric and ascorbic acid used for the treatment allows to finely tune the thermal, morphological and water absorption properties of the fibers. This evidence, along with the possibility to easily monitor the preparation through FT-IR spectroscopy, endows the fibers with a high application potential in several fields such as wound healing, water/air purification and agriculture.

5.
Anal Chem ; 85(8): 3849-57, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23323705

RESUMEN

A Functional Bio-Interlayer Organic Field-Effect Transistor (FBI-OFET) sensor, embedding a streptavidin protein capturing layer, capable of performing label-free selective electronic detection of biotin at 3 part per trillion (mass fraction) or 15 pM, is proposed here. The response shows a logarithmic dependence spanning over 5 orders of magnitude of analyte concentration. The optimization of the FBI analytical performances is achieved by depositing the capturing layer through a controllable Layer-by-Layer (LbL) assembly, while an easy processable spin-coating deposition is proposed for potential low-cost production of equally highly performing sensors. Furthermore, a Langmuirian adsorption based model allows rationalizing the analyte binding process to the capturing layer. The FBI-OFET device is shown to operate also with an antibody interlayer as well as with an ad hoc designed microfluidic system. These occurrences, along with the proven extremely high sensitivity and selectivity, open to FBI-OFETs consideration as disposable electronic strip-tests for assays in biological fluids requiring very low detection limits.


Asunto(s)
Biotina/análisis , Técnicas Electroquímicas/instrumentación , Estreptavidina/química , Adsorción , Anticuerpos/química , Técnicas Electroquímicas/métodos , Colorantes Fluorescentes , Proteínas Inmovilizadas/química , Cinética , Técnicas Analíticas Microfluídicas , Tiras Reactivas , Sensibilidad y Especificidad , Transistores Electrónicos
6.
J Funct Biomater ; 14(8)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37623668

RESUMEN

In the search for effective biomaterials for bone repair, magnesium phosphate cements (MPCs) are nowadays gaining importance as bone void fillers thanks to their many attractive features that overcome some of the limitations of the well-investigated calcium-phosphate-based cements. The goal of this review was to highlight the main properties and applications of MPCs in the orthopedic field, focusing on the different types of formulations that have been described in the literature, their main features, and the in vivo and in vitro response towards them. The presented results will be useful to showcase the potential of MPCs in the orthopedic field and will suggest novel strategies to further boost their clinical application.

7.
Colloids Surf B Biointerfaces ; 227: 113372, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37257300

RESUMEN

The formation of calciprotein particles (CPPs) in serum is a physiological phenomenon fundamental to prevent the rise of ectopic calcifications. CPPs are colloidal hybrid particles made of amorphous calcium phosphate stabilized by a protein, fetuin-A. Since albumin is the most abundant protein present in serum, we aimed at understanding if it plays a synergic action together with fetuin-A towards CPPs formation and stability. CPPs were prepared using a constant fetuin-A concentration (5 µM) and different concentrations of albumin (0-606 µM). The stability of CPPs, their crystallization and sedimentation were followed in situ by combining turbidimetry, precipitation analysis and dynamic light scattering. The morphology was investigated by scanning electron microscopy and cryo-transmission electron microscopy, while crystallinity was inspected by infrared spectroscopy. The effect of albumin on the amount of formed CPPs was also studied, as well as the amount of protein adsorbed on CPPs. We found that albumin is not able to prolong the lifetime of the amorphous phase, but it is very effective in delaying the sedimentation of CPPs after crystallization. Albumin also significantly decreases the amount and size of CPPs when present in their synthetic medium, likely playing a fundamental role in our organism together with fetuin-A towards the stabilization of CPPs.


Asunto(s)
Fosfatos de Calcio , alfa-2-Glicoproteína-HS , alfa-2-Glicoproteína-HS/metabolismo , Fosfatos de Calcio/metabolismo , Albúminas , alfa-Fetoproteínas/metabolismo , Calcio/metabolismo
8.
iScience ; 26(9): 107330, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37636051

RESUMEN

In this high-risk/high-reward study, we prepared complexes of a high explosive anion (picrate) with potentially explosive s-tetrazine-based ligands with the sole purpose of advancing the understanding of one of the weakest supramolecular forces: the lone pair-π interaction. This is a proof-of-concept study showing how lone pair-π contacts can be effectively used in crystal engineering, even of high explosives, and how the supramolecular architecture of the resulting crystalline phases influences their experimental thermokinetic properties. Herein we present XRD structures of 4 novel detonating compounds, all showcasing lone pair-π interactions, their thermal characterization (DSC, TGA), including the correlation of experimental thermokinetic parameters with crystal packing, and in silico explosion properties. This last aspect is relevant for improving the safety of high-energy materials.

9.
ACS Biomater Sci Eng ; 9(12): 6632-6643, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37982239

RESUMEN

Atmospheric pressure plasma treatments are nowadays gaining importance to improve the performance of biomaterials in the orthopedic field. Among those, magnesium phosphate-based cements (MPCs) have recently shown attractive features as bone repair materials. The effect of plasma treatments on such cements, which has not been investigated so far, could represent an innovative strategy to modify MPCs' physicochemical properties and to tune their interaction with cells. MPCs were prepared and treated for 5, 7.5, and 10 min with a cold atmospheric pressure plasma jet. The reactive nitrogen and oxygen species formed during the treatment were characterized. The surfaces of MPCs were studied in terms of the phase composition, morphology, and topography. After a preliminary test in simulated body fluid, the proliferation, adhesion, and osteogenic differentiation of human mesenchymal cells on MPCs were assessed. Plasma treatments induce modifications in the relative amounts of struvite, newberyite, and farringtonite on the surfaces on MPCs in a time-dependent fashion. Nonetheless, all investigated scaffolds show a good biocompatibility and cell adhesion, also supporting osteogenic differentiation of mesenchymal cells.


Asunto(s)
Osteogénesis , Fosfatos , Humanos , Ensayo de Materiales , Fosfatos/farmacología , Fosfatos/química , Presión Atmosférica
10.
Int J Pharm ; 646: 123473, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37788730

RESUMEN

Liver fibrosis is a condition characterized by the accumulation of extracellular matrix (ECM) arising from the myofibroblastic transdifferentiation of hepatic stellate cells (HSCs) occurring as the natural response to liver damage. To date, no pharmacological treatments have been specifically approved for liver fibrosis. We recently reported a beneficial effect of polyenylphosphatidylcholines (PPCs)-rich formulations in reverting fibrogenic features of HSCs. However, unsaturated phospholipids' properties pose a constant challenge to the development of tablets as preferred patient-centric dosage form. Profiting from the advantageous physical properties of the PPCs-rich Soluthin® S 80 M, we developed a tablet formulation incorporating 70% w/w of this bioactive lipid. Tablets were characterized via X-ray powder diffraction, thermogravimetry, and Raman confocal imaging, and passed the major compendial requirements. To mimic physiological absorption after oral intake, phospholipids extracted from tablets were reconstituted as protein-free chylomicron (PFC)-like emulsions and tested on the fibrogenic human HSC line LX-2 and on primary cirrhotic rat hepatic stellate cells (PRHSC). Lipids extracted from tablets and reconstituted in buffer or as PFC-like emulsions exerted the same antifibrotic effect on both activated LX-2 and PRHSCs as observed with plain S 80 M liposomes, showing that the manufacturing process did not interfere with the bioactivity of PPCs.


Asunto(s)
Excipientes , Hígado , Humanos , Ratas , Animales , Excipientes/farmacología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Comprimidos/farmacología , Células Estrelladas Hepáticas
11.
J Colloid Interface Sci ; 620: 431-441, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35439694

RESUMEN

HYPOTHESIS: Calciprotein particles (CPPs) are endogenous nanoparticles consisting of hybrid mineral-organic colloidal complexes made of calcium phosphates and Fetuin-A (Fet-A), a protein that in physiological conditions binds to amorphous calcium phosphate forming primary CPP (CPP1). CPP1 can crystallize resulting in hydroxyapatite-based secondary CPP (CPP2) that can eventually precipitate leading to vascular calcifications. The treatment of patients with molecules and ions that delay the amorphous-to-crystalline transition has shown promising results from a clinical perspective, but the study of their mechanism of action has not been thoroughly examined so far. EXPERIMENTS: This work describes the formation and crystallization mechanism of synthetic analogs of endogenous CPPs. The effect of different concentrations of Fet-A and of stabilizing agents (Mg2+, citrate and pyrophosphate) on the features and stability of CPPs was addressed by combining different characterization techniques such as turbidimetry, dynamic light scattering, infrared spectroscopy, and scanning electron microscopy. FINDINGS: The results show that the stabilizing agents display different action mechanisms and are effective to a different extent in preventing the formation of CPPs or delaying their crystallization. Such findings could be of interest to develop effective therapies for vascular calcifications and to deepen the understanding of amorphous calcium phosphate stabilization and its interaction with proteins.


Asunto(s)
Excipientes , Calcificación Vascular , Calcio , Fosfatos de Calcio/metabolismo , Cristalización , Humanos , Minerales , Proteínas , Calcificación Vascular/metabolismo , Calcificación Vascular/prevención & control
12.
J Colloid Interface Sci ; 605: 33-43, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34311313

RESUMEN

HYPOTHESIS: The mechanism of calcium silicate hydrate (CSH) formation, a relevant component of cement, the largest used material by mankind, is well documented. However, the effects of nano-sized materials on the CSH formation have not yet been evaluated. To this aim, a kinetic study on CSH formation via the "pozzolanic reaction" of nanosilica and calcium hydroxide nanoparticles, and in the presence of hydroxypropyl cellulose (HPC) as hydration regulator, is reported in this paper. EXPERIMENTS: The reagents were mixed with water and cured at 10, 20, 30 and 40 °C. The reaction kinetics was studied with differential scanning calorimetry (DSC). A Boundary Nucleation and Growth model (BNGM) combined with a diffusion-limited model was used to analyze the data, yielding induction times, reaction rates, activation energies, nucleation and linear growth rates, and the related diffusion coefficients. FINDINGS: The rate constants kB and kG, which are, respectively, the rate at which the nucleated boundary area transforms, and the rate at which the non-nucleated grains between the boundaries transform, increase with temperature. Their different temperature dependence accounts for the prevailing effect of nucleation over nuclei growth at progressively lower temperatures. The nucleation rate, IB, is strongly enhanced when using nanomaterials, while the linear growth rate, G, is limited by the tightly packed structure of the transforming matrix. HPC influences the kinetics between 10 and 30 °C; at 40 °C the temperature effect becomes predominant. HPC delays induction and acceleration periods, increases Ea(kB), and enhances the reaction efficiency during the diffusion regime, by retaining and delivering water over the matrix, thus allowing a higher water consumption in the hydration reaction of CSH.


Asunto(s)
Hidróxido de Calcio , Nanopartículas , Compuestos de Calcio , Cinética , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Silicatos , Dióxido de Silicio , Difracción de Rayos X
13.
J Colloid Interface Sci ; 606(Pt 1): 444-453, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34399361

RESUMEN

HYPOTHESIS: The study of Amorphous Calcium Phosphate (ACP) has become a hot topic due to its relevance in living organisms and as a material for biomedical applications. The preparation and characterization of Mg-substituted ACP nanoparticles (AMCP) with tunable Ca/Mg ratio is reported in the present study to address the effect of Mg2+ on their structure and stability. EXPERIMENTS: AMCPs particles were synthesized by precipitation of the precursors from aqueous solutions. The particles were analyzed in terms of morphology, crystallinity, and thermal stability, to get a complete overview of their physico-chemical characteristics. Computational methods were also employed to simulate the structure of ACP clusters at different levels of Mg2+ substitution. FINDINGS: Our results demonstrate that AMCP particles with tunable composition and crystallinity can be obtained. The analysis of the heat-induced crystallization of AMCP shows that particles' stability depends on the degree of Mg2+ substitution in the cluster, as confirmed by computational analyses. The presented results shed light on the effect of Mg2+ on ACP features at different structural levels and may be useful guidelines for the preparation and design of AMCP particles with a specific Ca/Mg ratio.


Asunto(s)
Fosfatos de Calcio , Nanopartículas , Cristalización
14.
J Colloid Interface Sci ; 598: 24-35, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33892441

RESUMEN

HYPOTHESIS: Among all the materials used so far to replace and repair damaged bone tissues, magnesium silicate bioceramics are one of the most promising, thanks to their biocompatibility, osteoinductive properties and good mechanical stability. EXPERIMENTS: Magnesium silicate cement pastes were prepared by hydration of MgO mixed with different SiO2 batches at different Mg/Si molar ratios. Pastes were either moulded or 3D printed to obtain set cements that were then calcined at 1000 °C to produce biologically relevant ceramic materials. Both cements and ceramics were characterized by means of X-ray diffraction, while two selected formulations were thoroughly characterized by means of injectability tests, Raman confocal microscopy, scanning electron microscopy, atomic force microscopy, gas porosimetry, X-ray microtomography and compressive tests. FINDINGS: The results show that bioceramic scaffolds, namely forsterite and clinoenstatite, can be effectively obtained by 3D printing MgO/SiO2 cement pastes, paving the way towards important advances in the field of bone tissue engineering.


Asunto(s)
Magnesio , Andamios del Tejido , Materiales Biocompatibles , Cerámica , Ensayo de Materiales , Dióxido de Silicio , Ingeniería de Tejidos
15.
J Nanosci Nanotechnol ; 21(5): 2872-2878, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33653453

RESUMEN

The recently-discovered endogenous formation of amorphous magnesium-calcium phosphate nanoparticles (AMCPs) in human distal small intestine occurs in a complex environment, which is rich in biologically-relevant molecules and macromolecules that can shape the properties and the stability of these inorganic particles. In this work, we selected as case studies four diverse molecules, which have different properties and are representative of intestinal luminal components, namely butyric acid, lactose, gluten and peptidoglycan. We prepared AMCPs in the presence of these four additives and we investigated their effect on the features of the particles in terms of morphology, porosity, chemical nature and incorporation/adsorption. The combined use of electron microscopy, infrared spectroscopy and thermal analysis showed that while the morphology and microstructure of the particles do not depend on the type of additive present during the synthesis, AMCPs are able to incorporate a significant amount of peptidoglycan, similarly to the process in which they are involved in vivo.


Asunto(s)
Magnesio , Nanopartículas , Adsorción , Fosfatos de Calcio , Humanos , Porosidad
16.
J Colloid Interface Sci ; 594: 802-811, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33794402

RESUMEN

HYPOTHESIS: It has been recently shown that, in our organism, the secretions of Ca2+, Mg2+ and phosphate ions lead to the precipitation of amorphous magnesium-calcium phosphate nanoparticles (AMCPs) in the small intestine, where the glycoprotein mucin is one of the most abundant proteins, being the main component of the mucus hydrogel layer covering gut epithelium. Since AMCPs precipitate in vivo in a mucin-rich environment, we aim at studying the effect of this glycoprotein on the formation and features of endogenous-like AMCPs. EXPERIMENTS: AMCPs were synthesized from aqueous solution in the presence of different concentrations of mucin, and the obtained particles were characterised in terms of crystallinity, composition and morphology. Solid State NMR investigation was also performed in order to assess the interplay between mucin and AMCPs at a sub-nanometric level. FINDING: Results show that AMCPs form in the presence of mucin and the glycoprotein is efficiently incorporated in the amorphous particles. NMR indicates the existence of interactions between AMCPs and mucin, revealing how AMCPs in mucin-hybrid nanoparticles affect the features of both proteic and oligosaccharidic portions of the glycoprotein. Considering that the primary function of mucin is the protection of the intestine from pathogens, we speculate that the nature of the interaction between AMCPs and mucin described in the present work might be relevant to the immune system, suggesting a novel type of scenario which could be investigated by combining physico-chemical and biomedical approaches.


Asunto(s)
Magnesio , Nanopartículas , Fosfatos de Calcio , Mucinas , Fosfatos
17.
J Colloid Interface Sci ; 589: 367-377, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33476891

RESUMEN

HYPOTHESIS: Endogenous Amorphous Magnesium-Calcium Phosphates (AMCPs) form in the human body and, besides their biomedical implications, the development of effective stabilization strategies is an open challenge. An interesting approach consists of stabilizing amorphous phosphates with macromolecules that have beneficial effects from a nutritional/medical point of view, for a potential application of the hybrid particles in nutraceutics or drug delivery. EXPERIMENTAL: We investigated the effect of proteins extracted from Moringa oleifera seeds (MO) on the features of synthetic analogs of AMCPs and on their crystallization pathway. The stability of the amorphous phase was studied using infrared spectroscopy and X-ray diffraction. To unravel the effect of the protein on the nano-scale structure of the inorganic particles, we also studied how MO affects the features of the amorphous phase using thermal analysis, small angle X-ray scattering and confocal Raman microscopy. FINDINGS: We observed that MO markedly delays the transition from amorphous to crystalline phosphate in a concentration-dependent fashion. Interestingly, MO not only enhances the lifetime of the amorphous phase, but also influences the type and amount of crystalline material formed. The results are relevant from both a fundamental and an applied perspective, paving the way for the use of these hybrids in the field of nutraceutics and drug delivery.


Asunto(s)
Moringa oleifera , Nanopartículas , Preparaciones Farmacéuticas , Fosfatos de Calcio , Cristalización , Humanos , Magnesio , Fosfatos , Semillas , Difracción de Rayos X
18.
Materials (Basel) ; 13(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679758

RESUMEN

The ingress of water, as a vehicle for many harmful substances, is the main cause of all the major physical and chemical degradation processes affecting concrete buildings. To prevent damage and protect concrete surfaces, coatings are generally used. Cement-based coatings in particular can act as a physical barrier and reduce the permeability of surfaces. In case of chloride-induced corrosion, corrosion inhibitors are also generally used, and nano-carriers have been proven to provide a long-term protective effect. In this work, we designed a surface protection cementitious coating enhanced with nano-silica and halloysite nanotubes (HNTs). HNTs were loaded with a corrosion inhibitor, benzotriazole (BTA), and used as nano-reservoir, while nano-silica was used to improve the structure of the protective coating and to strengthen its adhesion to the surface of application. The cementitious coatings were characterized with a multi-technique approach including thermal and spectroscopic analysis, scanning electron microscopy, specific surface area and pore size distribution, and Vickers hardness test. The release of BTA was monitored through UV-vis analysis, and the transportation of BTA through coated mortars was studied in simulated rain conditions. We evidenced that the presence of silica densifies the porous structure and increases the interfacial bond strength between the protective coating and the surface of application. We report here, for the first time, that HNTs can be used as nano-carriers for the slow delivery of anti-corrosion molecules in cement mortars.

19.
ACS Biomater Sci Eng ; 6(10): 5538-5548, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320576

RESUMEN

In the framework of new materials for orthopedic applications, Magnesium Phosphate-based Cements (MPCs) are currently the focus of active research in biomedicine, given their promising features; in this field, the loading of MPCs with active molecules to be released in the proximity of newly forming bone could represent an innovative approach to enhance the in vivo performances of the biomaterial. In this work, we describe the preparation and characterization of MPCs containing citrate, an ion naturally present in bone which presents beneficial effects when released in the proximity of newly forming bone tissue. The cements were characterized in terms of handling properties, setting time, mechanical properties, crystallinity, and microstructure, so as to unravel the effect of citrate concentration on the features of the material. Upon incubation in aqueous media, we demonstrated that citrate could be successfully released from the cements, while contributing to the alkalinization of the surroundings. The cytotoxicity of the materials toward human fibroblasts was also tested, revealing the importance of a fine modulation of released citrate to guarantee the biocompatibility of the material.


Asunto(s)
Cementos para Huesos , Ácido Cítrico , Citratos , Humanos , Compuestos de Magnesio , Fosfatos , Difracción de Rayos X
20.
J Phys Chem B ; 113(10): 3080-7, 2009 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-19708165

RESUMEN

The properties of the water confined in a hydrating white cement paste have been investigated using low-temperature differential scanning calorimetry (LT-DSC) and low-temperature near infrared spectroscopy (LT-NIR). LT-DSC thermograms show, upon cooling, several exothermic peaks in the temperature range -10 to -42 degrees C, whose position and area depend on the hydration process, as a consequence of the cement microstructure evolution. The peaks have been interpreted in terms of Jennings' Colloidal Model-II for the hydrated calcium silicate (C-S-H) microstructure. Thermograms from samples aged up to two months from the preparation show an exothermic peak at -42 degrees C, typical of water confined in small gel pores (SGP). The LT-NIR results show that, at the beginning of the hydration process, water crystallizes as hexagonal ice and becomes amorphous as the setting process evolves. Both calorimetric and spectroscopic findings indicate that the water confined into the SGP porosity of the C-S-H phase (with dimension 1-3 nm) has properties very similar to those previously described for the interfacial water in zeolites, Vycor, and proteins. In particular, this confined water experiences a liquid-liquid crossover at -42 degrees C, passing from a high-density to a low-density liquid (HDL-LDL crossover).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA