Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Regul Toxicol Pharmacol ; 128: 105093, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34864125

RESUMEN

The European Commission's Green Deal is a major policy initiative aiming to achieve a climate-neutral, zero-pollution, sustainable, circular and inclusive economy, driving both the New Industrial Strategy for Europe and the Chemicals Strategy for Sustainability. Innovative materials can help to reach these policy goals, but they need to be safe and sustainable themselves. Thus, one aim is to shift the development of chemicals to Safe- and Sustainable-by-Design, and define a new systems approach and criteria for sustainability to achieve this. An online workshop was organised in September 2020 by the Joint Research Centre and the Directorate-General Research and Innovation of the European Commission, with participants from academia, non-governmental organisations, industry and regulatory bodies. The aims were to introduce the concept of Safe- and Sustainable-by-Design, to identify industrial and regulatory challenges in achieving safer and more sustainable Smart Nanomaterials as an example of innovative materials, and to deliver recommendations for directions and actions necessary to meet these challenges. The following needs were identified: (i) an agreed terminology, (ii) a common understanding of the principles of Safe- and Sustainable-by-Design, iii) criteria, assessment tools and incentives to achieve a transition from Safe-by-Design to Safe- and Sustainable-by-Design, and (iv) preparedness of regulators and legislation for innovative chemicals/nanomaterials. This paper presents the authors' view on the state of the art as well as the needs for future activities, based on discussions at the workshop and further considerations. The case of Smart Nanomaterials is used to illustrate the Safe- and Sustainable-by-Design concept and challenges for its implementation. Most of the considerations can be extended to other advanced materials and to chemicals and products in general.


Asunto(s)
Química/normas , Ambiente , Regulación Gubernamental , Nanoestructuras/química , Nanotecnología/organización & administración , Desarrollo Sostenible/tendencias , Unión Europea , Humanos , Nanotecnología/normas , Políticas
2.
Regul Toxicol Pharmacol ; 104: 74-83, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30831158

RESUMEN

The OECD Working Party on Manufactured Nanomaterials (WPMN) provides a global forum for discussion of nano-safety issues. Together with the OECD Test Guidelines Programme (TGP) the WPMN has explored the need for adaptation of some of the existing OECD Test Guidelines (TGs) and Guidance Documents (GDs) as well as developing new TGs and GDs to specifically address NM issues. An overview is provided of progress in the TGP and WPMN, and information on supporting initiatives, regarding the development of TGs for nanomaterials addressing Physical Chemical Properties, Effects on Biotic Systems, Environmental Fate and Behaviour, and Health Effects. Three TGs specifically addressing manufactured nanomaterials have been adopted: a new TG318 ″Dispersion Stability of Nanomaterials in Simulated Environmental Media", and adaptation of TG412 and TG413 on Subacute Inhalation Toxicity: 28-Day Study/90-day Study. The associated GD39 on Inhalation Toxicity Testing has also been revised. The TGP current develops four new TGs and four GDs. One new TG and six GDs are developed in the WPMN. Six new proposals were submitted to the TGP in 2018. Furthermore, as TGs are accompanied by OECD harmonised templates (OHTs) for data collection, an outline of recently developed OHTs particularly relevant for NMs is also included.


Asunto(s)
Nanoestructuras/efectos adversos , Nanoestructuras/análisis , Organización para la Cooperación y el Desarrollo Económico , Pruebas de Toxicidad/normas , Administración por Inhalación , Animales , Humanos , Nanoestructuras/administración & dosificación
3.
Regul Toxicol Pharmacol ; 92: 8-28, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29074277

RESUMEN

Identifying and characterising nanomaterials require additional information on physico-chemical properties and test methods, compared to chemicals in general. Furthermore, regulatory decisions for chemicals are usually based upon certain toxicological properties, and these effects may not be equivalent to those for nanomaterials. However, regulatory agencies lack an authoritative decision framework for nanomaterials that links the relevance of certain physico-chemical endpoints to toxicological effects. This paper investigates various physico-chemical endpoints and available test methods that could be used to produce such a decision framework for nanomaterials. It presents an overview of regulatory relevance and methods used for testing fifteen proposed physico-chemical properties of eleven nanomaterials in the OECD Working Party on Manufactured Nanomaterials' Testing Programme, complemented with methods from literature, and assesses the methods' adequacy and applications limits. Most endpoints are of regulatory relevance, though the specific parameters depend on the nanomaterial and type of assessment. Size (distribution) is the common characteristic of all nanomaterials and is decisive information for classifying a material as a nanomaterial. Shape is an important particle descriptor. The octanol-water partitioning coefficient is undefined for particulate nanomaterials. Methods, including sample preparation, need to be further standardised, and some new methods are needed. The current work of OECD's Test Guidelines Programme regarding physico-chemical properties is highlighted.


Asunto(s)
Nanoestructuras/química , Humanos , Organización para la Cooperación y el Desarrollo Económico , Tamaño de la Partícula , Agua/química
4.
Regul Toxicol Pharmacol ; 81: 334-340, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27670079

RESUMEN

The European Commission has established a Nanomaterials Repository that hosts industrially manufactured nanomaterials that are distributed world-wide for safety testing of nanomaterials. In a first instance these materials were tested in the OECD Testing Programme. They have then also been tested in several EU funded research projects. The JRC Repository of Nanomaterials has thus developed into serving the global scientific community active in the nanoEHS (regulatory) research. The unique Repository facility is a state-of-the-art installation that allows customised sub-sampling under the safest possible conditions, with traceable final sample vials distributed world-wide for research purposes. This paper describes the design of the Repository to perform a semi-automated subsampling procedure, offering high degree of flexibility and precision in the preparation of NM vials for customers, while guaranteeing the safety of the operators, and environmental protection. The JRC nanomaterials are representative for part of the world NMs market. Their wide use world-wide facilitates the generation of comparable and reliable experimental results and datasets in (regulatory) research by the scientific community, ultimately supporting the further development of the OECD regulatory test guidelines.


Asunto(s)
Ensayo de Materiales , Nanoestructuras/química , Nanotecnología/métodos , Investigación , Automatización , Humanos
5.
Artículo en Inglés | MEDLINE | ID: mdl-26397955

RESUMEN

Selecting appropriate ways of bringing engineered nanoparticles (ENP) into aqueous dispersion is a main obstacle for testing, and thus for understanding and evaluating, their potential adverse effects to the environment and human health. Using different methods to prepare (stock) dispersions of the same ENP may be a source of variation in the toxicity measured. Harmonization and standardization of dispersion methods applied in mammalian and ecotoxicity testing are needed to ensure a comparable data quality and to minimize test artifacts produced by modifications of ENP during the dispersion preparation process. Such harmonization and standardization will also enhance comparability among tests, labs, and studies on different types of ENP. The scope of this review was to critically discuss the essential parameters in dispersion protocols for ENP. The parameters are identified from individual scientific studies and from consensus reached in larger scale research projects and international organizations. A step-wise approach is proposed to develop tailored dispersion protocols for ecotoxicological and mammalian toxicological testing of ENP. The recommendations of this analysis may serve as a guide to researchers, companies, and regulators when selecting, developing, and evaluating the appropriateness of dispersion methods applied in mammalian and ecotoxicity testing. However, additional experimentation is needed to further document the protocol parameters and investigate to what extent different stock dispersion methods affect ecotoxicological and mammalian toxicological responses of ENP.


Asunto(s)
Ecotoxicología , Nanopartículas/análisis , Contaminantes Químicos del Agua/análisis
7.
F1000Res ; 11: 1532, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38463031

RESUMEN

Background: Advanced materials are most likely to bring future economic, environmental and social benefits. At the same time, they may pose challenges regarding their safety and sustainability along the entire lifecycle. This needs to be timely addressed by the stakeholders (industry, research, policy, funding and regulatory bodies). As part of a larger foresight project, this study aimed to identify areas of scientific research and technological development related to advanced materials, in particular advanced nanomaterials and the sub-group of smart nanomaterials. The study identified and collected data to build relevant research and innovation indicators and analyse trends, impact and other implications. Methods: This study consisted of an iterative process including a documentation phase followed by the identification, description and development of a set of core research and innovation indicators regarding scientific publications, EU projects and patents. The data was extracted mainly from SCOPUS, CORDIS and PATSTAT databases using a predefined search string that included representative keywords. The trends, distributions and other aspects reflected in the final version of the indicators were analysed, e.g. the number of items in a period of time, geographical distribution, organisations involved, categories of journals, funding programmes, costs and technology areas. Results: Generally, for smart nanomaterials the data used represent around 3.5% of the advanced nanomaterials data, while for each field analysed, they represent 4.4% for publications, 13% for projects and 1.1% for patents. The study shows current trends for advanced nanomaterials at a top-level information that can be further extended with sub-indicators. Generally, the results indicated a significant growth in research into advanced nanomaterials, including smart nanomaterials, in the last decade, leading to an increased availability of information. Conclusion: These indicators identify trends regarding scientific and technological achievements and represent an important element when examining possible impacts on society and policy implications associated to these areas.


Asunto(s)
Nanoestructuras , Tecnología , Costos y Análisis de Costo , Políticas , Publicaciones
8.
NanoImpact ; 24: 100356, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-35559815

RESUMEN

Commentary on two recent papers published in NanoImpact "Safe(r) by design implementation in the nanotechnology industry" and "Integrative approach in a safe by design context combining risk, life cycle and socio-economic assessment for safer and sustainable nanomaterials".


Asunto(s)
Nanoestructuras , Nanotecnología , Animales , Industrias , Estadios del Ciclo de Vida , Nanoestructuras/efectos adversos , Factores Socioeconómicos
9.
NanoImpact ; 21: 100297, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33738354

RESUMEN

The European Green Deal, the European Commission's new Action Plan for a Circular Economy, the new European Industrial Strategy and the Chemicals Strategy for Sustainability launched in October 2020 are ambitious plans to achieve a sustainable, fair and inclusive European Union's economy. In line with the United Nations Sustainable Development Goals 2030, these policies require that any new material or product should be not only functional and cost-effective but also safe and sustainable to ensure compliance with regulation and acceptance by consumers. Nanotechnology is one of the technologies that could enable such a green growth. This paper focuses on advanced nanomaterials that actively respond to external stimuli, also known as 'smart nanomaterials', and which are already on the market or in the research and development phase for non-medical applications such as in agriculture, food, food packaging and cosmetics. A review shows that smart nanomaterials and enabled products may present new challenges for safety and sustainability assessment due to their complexity and dynamic behaviour. Moreover, existing regulatory frameworks, in particular in the European Union, are probably not fully prepared to address them. What is missing today is a systematic and comprehensive approach that allows for considering sustainability aspects hand in hand with safety considerations very early on at the material design stage. We call on innovators, scientists and authorities to further develop and promote the 'Safe- and Sustainable-by-Design' concept in nanotechnology and propose some initiatives to go into this direction.


Asunto(s)
Nanoestructuras , Agricultura , Unión Europea , Nanoestructuras/efectos adversos , Nanotecnología , Desarrollo Sostenible
11.
Toxicol Sci ; 150(1): 40-53, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26612840

RESUMEN

Amorphous silica nanoparticles (ASNP) can be synthetized via several processes, 2 of which are the thermal route (to yield pyrogenic silica) and the wet route from a solution containing silicate salts (to obtain precipitated, colloidal, mesoporous silica, or silica gel). Both methods of synthesis lead to ASNP that are applied as food additive (E551). Current food regulation does not require that production methods of additives are indicated on the product label, and, thus, the ASNP are listed without mentioning the production method. Recent results indicate, however, that pyrogenic ASNP are more cytotoxic than ASNP synthesized through the wet route. The present study was aimed at clarifying if 2 representative preparations of ASNP, NM-203 (pyrogenic) and NM-200 (precipitated), of comparable size, specific surface area, surface charge, and hydrodynamic radius in complete growth medium, had different effects on 2 murine macrophage cell lines (MH-S and RAW264.7 cells). Our results show that, when incubated in protein-rich fluids, NM-203 adsorbed on their surface more proteins than NM-200 and, once incubated with macrophages, elicited a greater oxidative stress, assessed from Hmox1 induction and ROS production. Flow cytometry and helium ion microscopy indicated that pyrogenic NM-203 interacted with macrophages more strongly than the precipitated NM-200 and triggered a more evident inflammatory response, evaluated with Nos2 induction, NO production and the secretion of TNF-α, IL-6 and IL-1ß. Moreover, both ASNP synergized macrophage activation by bacterial lipopolysaccharide (LPS), with a higher effect observed for NM-203. In conclusion, the results presented here demonstrate that, compared to precipitated, pyrogenic ASNP exhibit enhanced interaction with serum proteins and cell membrane, and cause a larger oxidative stress and stronger proinflammatory effects in macrophages. Therefore, these 2 nanomaterials should not be considered biologically equivalent.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Animales , Técnicas de Cultivo de Célula , Línea Celular , Precipitación Química , Citocinas/genética , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Macrófagos Alveolares/inmunología , Ratones , Microscopía Electrónica de Transmisión , Nanopartículas/química , Nanopartículas/metabolismo , Nanotecnología/métodos , Óxido Nítrico/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Propiedades de Superficie
12.
PLoS One ; 10(5): e0127174, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25996496

RESUMEN

Nanomaterials (NMs) display many unique and useful physico-chemical properties. However, reliable approaches are needed for risk assessment of NMs. The present study was performed in the FP7-MARINA project, with the objective to identify and evaluate in vitro test methods for toxicity assessment in order to facilitate the development of an intelligent testing strategy (ITS). Six representative oxide NMs provided by the EC-JRC Nanomaterials Repository were tested in nine laboratories. The in vitro toxicity of NMs was evaluated in 12 cellular models representing 6 different target organs/systems (immune system, respiratory system, gastrointestinal system, reproductive organs, kidney and embryonic tissues). The toxicity assessment was conducted using 10 different assays for cytotoxicity, embryotoxicity, epithelial integrity, cytokine secretion and oxidative stress. Thorough physico-chemical characterization was performed for all tested NMs. Commercially relevant NMs with different physico-chemical properties were selected: two TiO2 NMs with different surface chemistry - hydrophilic (NM-103) and hydrophobic (NM-104), two forms of ZnO - uncoated (NM-110) and coated with triethoxycapryl silane (NM-111) and two SiO2 NMs produced by two different manufacturing techniques - precipitated (NM-200) and pyrogenic (NM-203). Cell specific toxicity effects of all NMs were observed; macrophages were the most sensitive cell type after short-term exposures (24-72h) (ZnO>SiO2>TiO2). Longer term exposure (7 to 21 days) significantly affected the cell barrier integrity in the presence of ZnO, but not TiO2 and SiO2, while the embryonic stem cell test (EST) classified the TiO2 NMs as potentially 'weak-embryotoxic' and ZnO and SiO2 NMs as 'non-embryotoxic'. A hazard ranking could be established for the representative NMs tested (ZnO NM-110 > ZnO NM-111 > SiO2 NM-203 > SiO2 NM-200 > TiO2 NM-104 > TiO2 NM-103). This ranking was different in the case of embryonic tissues, for which TiO2 displayed higher toxicity compared with ZnO and SiO2. Importantly, the in vitro methodology applied could identify cell- and NM-specific responses, with a low variability observed between different test assays. Overall, this testing approach, based on a battery of cellular systems and test assays, complemented by an exhaustive physico-chemical characterization of NMs, could be deployed for the development of an ITS suitable for risk assessment of NMs. This study also provides a rich source of data for modeling of NM effects.


Asunto(s)
Nanoestructuras/química , Nanoestructuras/toxicidad , Óxidos/química , Óxidos/toxicidad , Pruebas de Toxicidad , Animales , Técnicas de Cultivo de Célula , Células Madre Embrionarias/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Humanos , Técnicas In Vitro , Concentración 50 Inhibidora , Células Intersticiales del Testículo/efectos de los fármacos , Macrófagos/efectos de los fármacos , Masculino , Ratones , Células de Sertoli/efectos de los fármacos , Dióxido de Silicio , Titanio , Óxido de Zinc
13.
Inhal Toxicol ; 15(12): 1147-77, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14515220

RESUMEN

This 3-mo inhalation study investigated the biological effects of a special-purpose glass microfiber (E-glass microfiber), the stone wool fiber MMVF21, and a new high-temperature application fiber (calcium-magnesium-silicate fiber, CMS) in Wistar rats. Rats were exposed 6 h/day, 5 days/wk for 3 mo to fiber aerosol concentrations of approximately 15, 50, and 150 fibers/ml (fiber length >20 microm) for E-glass microfiber and MMVF21. For the CMS fiber only the highest exposure concentration was used. During a 3-mo postexposure period, recovery effects were studied. In the highest exposure concentration groups, gravimetric concentrations were 17.2 mg/m3 for E-glass microfiber, 37 mg/m3 for MMVF21, and 49.5 mg/m3 for the CMS fiber. After 3 mo of exposure, lung retention of fibers longer than 20 micro m per lung was 17 x 10(6) for E-glass microfiber, 5.7 x 10(6) for MMVF21, and 0.88 x 10(6) for CMS. After 3 mo of recovery the concentration of the long fiber fraction was decreased to 38.4%, 63.9%, and 3.0% compared to original lung burden for the E-glass microfiber, MMVF21, and CMS, respectively. Biological effects measured included inflammatory and proliferative potential, histopathology lesions, and the persistence of these effects over a recovery period of 3 mo. Generally, observed effects were higher for E-glass microfiber when compared to MMVF21. The following clear dose-dependent effects on E-glass microfiber and MMVF21 exposure were observed as main findings of the study: increase in lung weight, in measured biochemical parameters and polymorphonuclear leukocytes (PMN) in the bronchoalveolar lavage fluid (BALF), in cell proliferation (BrdU-response) of terminal bronchiolar epithelium, and in interstitial fibrosis. The values observed in the proliferation assay on the carcinogenic E-glass microfiber indicate that this assay has an important predictive value with regards to potential carcinogenicity. Surprisingly, for the biosoluble CMS fiber, fibrogenic potential was detected in this study. The results of the CMS exposure group indicate that effects may be dominated by the presence of nonfibrous particles and that fibrosis may not be a predictor of carcinogenic activity of fiber samples, if the fiber preparation contains a significant fraction of nonfibrous particles. In summary, this study demonstrates the importance of fiber dust contamination by granular components. For future subchronic studies a longer posttreatment observation period would be advisable.


Asunto(s)
Vidrio , Lana/efectos adversos , Administración por Inhalación , Aerosoles , Animales , Líquido del Lavado Bronquioalveolar/química , Calibración , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA